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Influence of diffraction on the spectrum and wave functions of an open system
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In this paper, we demonstrate the existence and significance of diffractive orbits in an open microwave
billiard, both experimentally and theoretically. Orbits that diffract off a sharp edge of the system are found to
have a strong influence on the transmission spectrum of the system, especially in the regime where there are no
stable classical orbits. On resonance, the wave functions are influenced by both classical and diffractive orbits.
Off resonance, the wave functions are determined by the constructive interference of multiple transient, non-
periodic orbits. Experimental, numerical, and semiclassical results are presented.
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I. INTRODUCTION

In this work, we discuss the transmission spectrum a
wave functions of an open resonator coupled to a quan
point contact~QPC!. The system exhibits both stable an
unstable dynamics, depending on the value of a single
rameter. The spectral properties of the resonator are d
mined by the interference of closed~not necessarily periodic!
orbits that begin and end at the QPC. Semiclassically,
computes the transmission of such a system with a sum
the classicaltrajectories. However, it was found experime
tally that there were many resonances in the spectrum w
did not appear in the theory when classical trajectories
volving only specular reflection were considered. We fou
that the missing resonances were reproduced only whennon-
classicalclosed orbits that undergodiffraction were included
into the semiclassical sum for the transmission.

This issue of including diffraction into the semiclassic
propagator has been considered by various authors, for
closed systems@2–4# and open systems@5#. The basis for
many of these treatments is the geometric theory of diffr
tion, originated by Keller@20#. A distinguishing feature of
the work presented here is that, in the unstable regime of
resonator, the effect of the diffractive orbits is of the sa
order as that of the purely classical orbits. A consequenc
this is that there are as many~or more! resonances that ar
supported by diffractive orbits as are supported by sim
classical orbits. This is related to the fact that there is o
one classical closed orbit in our system in the unstable
gime. This is in stark contrast to the case of a closed,
stable~chaotic! system. Normally, for a closed system, d
fraction plays a minor role because of the overwhelm
number of nondiffractive periodic orbits present. Howev
when the system is open, the great majority of long perio
orbits might vanish, if they are allowed to escape the syst
In such a case, where only a very small number of class
periodic orbits are present, diffractive orbits may gain in i
portance and considerably affect the spectrum of the sys
This situation is realized by our resonator.

The paper is organized as follows. In Sec. II, we disc
the resonator being studied. In Sec. III, we describe the
perimental apparatus. In Sec. IV, we present the experim
tal results, which are comprised of measured spectra
PRE 621063-651X/2000/62~4!/4873~16!/$15.00
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wave functions. In Sec. V we provide a short introduction
the geometric theory of diffraction, which is the theory th
describes how diffractive rays contribute to the semiclass
description of a quantum mechanical wave function. In S
VI we show in detail how the geometric theory of diffractio
is incorporated into the semiclassical trace formula. H
theoretical results are seen to be in excellent agreement
measured data. In Sec. VII the physics of the resonator in
time domain is discussed, and again very good agreem
between theoretical and experimental observations is fou
In Sec. VIII we discuss the behavior of the system as
transition between stable and unstable dynamics is cros
as well as analogies of the open resonator with some w
known closed systems, namely, the lemon and stadium
liards. Finally, in Sec. IX we discuss the possibility of ima
ing a pure state quantum mechanical wave function in
mesoscopic system with the help of an atomic force mic
scope, with concluding remarks in Sec. X. A short pap
discussing the experimental results presented here has
previously published@6#. See also@7#.

II. THE RESONATOR

Recently, Katineet al. studied the transmission behavio
of an open quantum billiard in the context of a tw
dimensional electron gas~2DEG! in a GaAs/AlGaAs hetero-
structure@8#. Their resonator was formed by a wall with
small aperture~the QPC!, and an arc-shaped reflector.
schematic of this resonator is shown in Fig. 1. The volta
on the reflector could be varied, effectively moving the r
flector toward or away from the wall. Their measureme
showed a series of conductance peaks, analogous to t
seen in a Fabry-Pe´rot resonator, as the reflector position w
varied.

An interesting property of the resonator considered her
that it is geometricallyopen, but in the stable regime it is
classically closed. In the unstable regime, the resonan
properties of the billiard are determined in large part bydif-
fraction.

The resonator shown in Fig. 1 has two distinct modes
operation. When the center of curvature of the reflector is
the left of the wall~the regime studied in@8#!, then almost all
classical paths starting from the QPC that hit the reflec
4873 ©2000 The American Physical Society
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remain forever in the region between wall and the reflec
the dynamics is stable and the periodic orbits can be se
classically quantized. Each quantized mode of the reson
can be characterized by two quantum numbers (n,m), which
represent the number of radial and angular nodes, res
tively. As the reflector-wall separation is varied, the cond
tance exhibits a peak each time one of these quantized m
is allowed. Once an electron is in the resonator, the only w
for it to leave is by tunneling back through the QPC or
diffracting around the reflector; since both processes
slow, the resonances have narrow widths. Because the
is on the symmetry axis, only modes with evenm are excited
significantly. The states of the resonator in the stable reg
bear a strong resemblance to a certain symmetry clas
states in a lemon-shaped billiard@9#. This class has even
symmetry about the short axis of the lemon, and odd sy
metry about the long axis. This connection will be explor
more fully in Sec. VIII.

When the center of curvature is to the right of the wa
however, the dynamics becomes unstable: all classical tra
tories beginning at the QPC rapidly bounce out of the re
nator, except for a single unstable periodic orbit along
axis of symmetry, which we will call the ‘‘horizontal’’ orbit
@see Fig. 1~b!#. The horizontal orbit is a member of a class
orbits that we call ‘‘geometric,’’ because their paths are go
erned by specular reflection off the wall and reflector, a
they do not undergo diffraction. Although the horizontal o
bit returns to the QPC, the electron has a low probability
escaping the resonator there because the QPC is m
smaller than the de Broglie wavelength of the electron. B
cause the horizontal orbit is the only periodic orbit in t
unstable regime, one might expect resonant buildup o
along the symmetry axis. Such a spectrum would be qu
one-dimensional, with only the half-wavelength periodic
of a Fabry-Pe´rot cavity. However, in numerical simulation
it was found that there are other transmission resonance
the unstable regime that do not correspond to any class
periodic orbits@10#. It was proposed that these anomalo
peaks are supported by diffraction off the tips of the refl
tor. Unfortunately, in the mesoscopic experiments, decoh
ence of the electron wave by impurities in the GaAs/AlGa
heterostructure shortens the lifetime of the resonances, l

FIG. 1. ~a! A schematic of the mesoscopic resonator studied
Katine et al. @8# with radius of curvatureR, opening anglea, and
reflector-wall separationD. Electrons impinge on the wall from th
left, and the conductance to the region on the right is measured~b!
Two closed orbits of the unstable resonator: diffractive~dotted line!
and horizontal~dashed line!. These will be discussed later in th
paper.
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ing insufficient energy resolution to resolve the diffracti
peaks@11#.

III. EXPERIMENT

Because of the problems of dissipation and decohere
in the mesoscopic experiments, we decided to investiga
parallel-plate microwave resonator with a similar geomet
In microwave experiments, decoherence and dissipation
not a problem, the geometry of the resonator can be spec
much more accurately, and the dynamical range of availa
wavelengths is much larger. The experimental setup
shown in Fig. 2.

The equation governing the component of the elec
field normal to the plates for the TEM mode is identical
the two-dimensional time-independent Schro¨dinger equation
@12–15#. Therefore, by studying the modes of parallel-pla
resonators we can gain insight into the behavior of tw
dimensional solutions to the Schro¨dinger equation.

The resonator consisted of two parallel copper plates,
square, separated by a distance of 1.25 cm. One side o
resonator consisted of a copper wall. The other three s
were lined with a 11.5 cm thick layer of microwave absorb
~C-RAM LF-79, Cuming Microwave Corp.! designed to pro-
vide 20 dB of attenuation in the reflected wave intensity
the range 0.6–40 GHz. The absorber prevented outgo
waves from returning to the resonator, thereby simulating
open system in the directions away from the wall. An a
tenna was inserted normal to the plates, 2 mm from the w
to simulate the QPC. The curved reflector was formed from
rectangular aluminum rod bent into an arc with radius
curvature R530.5 cm. Various opening anglesa were
used: 115 °, 112 °, 109 °, and 106 °.

Instead of measuring the transmission of the resonator
measured the reflection back from the antenna; for this
used an HP8720D network analyzer in ‘‘reflection’’ mod
~the complexS11 parameter of the resonator was measure!.
We inferred the transmission probabilityuTu2 via uTu251
2uRu2, whereR5S11 is the measured reflection coefficien
Because of the proximity of the antenna to the wall, it w
only weakly coupled to the resonator; therefore, in the
sence of the reflector, the transmission coefficient was c
to zero. However, when the reflector was present, the tra
mission experienced pronounced maxima at certain frequ
cies.

y
FIG. 2. The microwave analog of the mesoscopic resona

studied by Katineet al. @8#. The antenna simulates the QPC;
reduce its coupling to the resonator, it is placed very close to
wall. The drawing is not to scale.
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IV. RESULTS

In Fig. 3 we show a transmission spectrum at fixed f
quency, as the distance between the wall and reflecto
varied. In the stable regime, we see that the peaks are na
and well defined. This is because the dynamics is stabl
this regime: nearly all trajectories starting from the QPC t
hit the reflector remain forever in the region between the w
and the reflector. In this regime, there exist invariant to
which may be semiclassically quantized to produce the st
of the stable resonator. Such a classical orbit is shown in
4, along with its quantum mechanical wavefunction count
part. We see that the trajectory does not approach the re
where the resonator is open. Thus, it behaves as if the ca
were closed—hence the narrow widths of the peaks in t
stable regime.

In the unstable regime, the transmission curve is qu
different. Here, there are two types of resonances. The
type, labeledf in Fig. 3, is related to the horizontal orb
along the axis of symmetry, and bears some resemblance
Fabry-Pe´rot type resonance between two half-silvered m

FIG. 3. Experimental transmission versus reflector-wall sep
tion at a fixed frequency of 5.63 GHz; i.e.,R55.7l. The
stable/unstable transition point occurs at abscissa zero. In the s
regime, the peaks are labeled by their radial and angular quan
numbers (n,m). In the unstable regime, the diffractive resonanc
~labeledd) appear to the right of the Fabry-Pe´rot peaks~labeledf ).
The dashed curve is the result of a semiclassical calculation
takes diffractive orbits into account~see text!. The opening angle
for the reflector wasa5106 °. With the reflector removed from th
cavity, the transmission was 0.15 in these units.

FIG. 4. On the left is a classical trajectory starting at the QP
On the right is the corresponding computed wave function.
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rors. The second type, labeledd, is supported by diffraction
off the tips of the reflector.

We verified experimentally that thed peaks were indeed
supported by diffraction by surrounding the tips of the refle
tor with microwave absorber and repeating the experime
as indicated in Fig. 5. When this was done, the Fabry-Pe´rot
resonances were unaffected, but the diffractive peaks w
entirely eliminated from the spectrum. This makes sense
cause the gradually thickening absorber smoothly attenu
reflections from rays coming near the tip, leaving no sh
discontinuity from which rays could diffract.

The wave functions corresponding to peaksf 1 and d1
were measured using the technique of Maier and Slater@16#.
They showed that the frequency shift of a given resona
due to a small sphere of radiusr 0 at a position (x,y) is given
by

v22v0
2

v0
2

54pr 0
3S 1

2
H0

2~x,y!2E0
2~x,y! D , ~1!

whereE0 andH0 are the unperturbed electric and magne
fields. Thus, the frequency shift is proportional to the loc
intensity of the microwave field, and by measuring the sh
as a function of the position of the sphere the field intens
of a particular mode can be mapped out. Note that the
quency shift is positive in regions where the magnetic field
large, and negative where the electric field is large. Also,
factor of 1/2 multiplying the magnetic field in Eq.~1! indi-
cates that the sphere is a stronger perturbation to the ele
field than the magnetic field. In our measurements, we fo
this to be the case: the shifts were predominantly negat
Appreciable positive shifts were found only at the nodes
the electric field, corresponding to maxima of the magne
field.

Figure 6 shows theoretical quantum wave functions co
pared with experimentally measured frequency shifts for
resonances labeled byf 1 and d1 in Fig. 3. The theoretical
wave functions were generated using Edwards’ wave
method presented in@10#.
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FIG. 5. Diffractive peaks were removed from the spectrum
placing microwave absorber near the tips of the reflector, as i
cated.
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The measured frequency shift is plotted as a function
sphere position. For these measurements, we used a
bead of diameter 4.0 mm for the perturbation. The bea
small enough that it shifts the peaks by much less than
separation between peaks. The bead was rastered ove
inside of the cavity by means of an external magnet. T
way, the bead could be moved around inside the cavity w
out taking the cavity apart. It is important to note that t
frequency shift is not proportional toE2, but rather toH2/2
2E2. Therefore we show only negative contour lines bel
20% of the maximum negative shift, and thereby emphas
regions of strong electric field. The similarity between theo
and experiment is striking.

The wave function labeledf 1 in Fig. 6 is clearly associ-
ated with the horizontal orbit along the axis of symmet
Rays emanating from a point source located on the axi
symmetry next to the wall bounce off the reflector and co
to an approximate focus about 10 cm from the source.
focus is approximate because of spherical~or in this case
cylindrical! aberration.

Now we turn our attention to the state labeledd1 in Fig. 6.
As noted above, the only periodic orbit in the unstable
gime is the horizontal orbit, along the axis of symmetry. T
pictured wave function, however, clearly has very little a
plitude along this periodic orbit. Instead the wave functi
has a band of higher amplitude running from the region

FIG. 6. Comparison between theoretical quantum wave fu
tions ~left! and experimentally measured microwave frequen
shifts ~right!. The two modes correspond to peaksf 1 and d1, re-
spectively, in Fig. 3. The wall is located on the left vertical axis
each plot, and the reflector position is indicated by the arc.
graph ticks are 10 cm apart. The fine grid indicates the spacin
the experimentally sampled points~grid spacing 1 cm!.
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the tip of the mirror to the QPC, but in the unstable regim
there is noclassicalperiodic orbit that does this. Later in th
paper, it will be shown that states such asd1 are supported
by orbits that undergodiffraction off the tips of the reflector.
One such orbit is shown in Fig. 1~b!. Rays that hit the
smooth surfaces of the reflector or wall undergo specu
reflection, whereas the rays that hit near the reflector tips
be diffracted. A fraction of the wave amplitude can th
return to the QPC from this region, thus setting up anon-
classicalclosed orbit. All peaks labeled with ad in Fig. 3 are
supported by such diffractive orbits.

Numerical calculations have shown that for energies
resonance, the quantum wave function is often intermed
between those shown forf 1 andd1, in the sense that ampli
tude seems to be running from the QPC to some point
tween the center and the tip of the reflector@10#. This can be
understood in terms of the interference of paths with e
other as they ‘‘walk off’’ the horizontal orbit and escape th
resonator. Thus diffraction does not necessarily play a m
role in determining the off-resonance wave functions. Ho
ever, diffraction is instrumental in determining the on
resonance wave functions underlying the conductance p
d1 andd2 in Fig. 3. Figure 7 shows a more global picture
the transmission properties of the resonator.

Here we plot the transmission of the resonator as both
wavelength and the reflector-wall separation are varied. E
vertical slice through this figure is a frequency spectrum w
fixed reflector position; the dotted line marks the classi
transition from stable to unstable motion that occurs wh
the reflector’s center of curvature moves to the right of

-
y

e
of

FIG. 7. Experimental transmission versus reflector-wall sepa
tion and wavelength. High transmission regions are dark. On
left of the vertical dotted line is the stable regime, where the tra
mission peaks are sharp. The quantum numbers (n,m) are indicated
for many of the peaks. On the right is the unstable regime, wh
the resonances become wider and diffractive orbits become im
tant. Transmission peaks supported by diffractive orbits are mar
by d.
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QPC. The vertical axis indicates how many wavelengths
along the horizontal orbit between the QPC and the reflec
The repetition of the resonance pattern every half wavelen
in the vertical direction is analogous to the half-wavelen
periodicity of a Fabry-Pe´rot cavity.

In the stable regime the peaks have been labeled
their quantum numbers (n,m). Because of the choice of ver
tical axis, them50 resonance peaks are approximately ho
zontal in this figure. As the stable/unstable transition is
proached, the peaks with highm disappear one by on
because their large angular sizes allow them to esc
around the reflector.

At the stable/unstable transition, all of the resonances
family would be approximately degenerate, but instead th
is an avoided crossing. The level repulsion is caused b
coupling that is partly mediated by diffraction; this subje
will be explored more thoroughly in Sec. VIII.

In Fig. 8 the angular dependence of a diffractive state
shown as the reflector is passed adiabatically through
stable/unstable transition point. In the stable region, mos
the amplitude is along the symmetry axis. As the reflec
moves further from the wall, the amplitude slowly separa
into two lobes, with very little in the center. When the r
flector is only slightly in the unstable region, there are ban
of amplitude running to a point on the reflector intermedi
between the center and the tips, as in the curve forD
2R)/R50.016 in Fig. 8.

In the unstable regime, the only remaining classical p
odic orbit is the horizontal orbit, which itself becomes u
stable. The Fabry-Pe´rot peak~labeledf in Fig. 7! is essen-
tially quantized along the horizontal orbit, so its positio
shows a simple dependence on reflector position. It beco
broad in the unstable regime, with a lifetime given by t
classical Lyapunov stability exponent of the horizontal orb
Two diffractive resonances~labeled byd) are also visible in
each family; they separate from the Fabry-Pe´rot type peak as
the reflector is moved away from the wall. The diffractiv
peaks labeled byd in Fig. 7 cannot be explained by sem
classical theory unless diffraction off the tips of the reflec
is included, as will be shown in the following sections.

FIG. 8. In this figure, we show the angular dependence o
diffractive state as the reflector is moved through the stable/unst
transition. Plotted is the amplitude of the frequency shifts measu
1 cm away from the reflector. The value of (D2R)/R is indicated
for each curve. The tips of the reflector are indicated on the plo
vertical dashed lines.
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V. GEOMETRIC THEORY OF DIFFRACTION

Before we consider the problem of computing semiclas
cally the transmission properties of our resonator, let
study the simpler problem of diffraction of a plane wave o
an infinite half line in 2D. This problem will serve as a goo
introduction into the geometrical theory of diffraction, whic
will be used to include diffraction into the semiclassic
propagator.

The problem is illustrated in Fig. 9. A plane waveeikx is
normally incident on the half line from the left. The half-lin
extends up from the middle of the figure, indicated by t
dark line. We take the tip of the line to be our coordina
origin. Within the geometrical optics approximation, th
problem is divided into three separate regions: those of tra
mission, reflection, and shadow, labeled I, II, and III, resp
tively. The values of the wave function in each region a
indicated in the figure as well. In region I, the wave does
hit the wall and thus is unchanged within the geometric o
tics approximation. In region II, the wave is perfectly r
flected and thus a standing sine wave is set up there
region III, we have a perfect shadow region, which is co
pletely dark. Along the reflection and shadow boundar
indicated, the solution is discontinuous. Of course, these
continuities are not present in the exact solution; they are
artifact of the geometric approximation. As we shall see, i
the diffraction off the tip of the wall that corrects these d
continuities.

In 1962, Keller showed that one can think of diffractio
as originating from a group of ‘‘diffracted rays’’ originating
from the edge of the wall@20#. The idea is illustrated in Fig
10. Away from the shadow and reflection boundaries, th
diffracted rays have the form of an outgoing cylinder wav
multiplied by an angle-dependent ‘‘diffraction coefficient.
However, Keller’s original theory was shown to be inval
on the reflection and shadow boundaries. A properly u
formized geometric theory of diffraction was developed
Kouyoumjian and Pathak@19#. The diffracted rays are mul
tiplied by a suitable complex number that depends on b
the angles of the incident and diffracted rays relative to
wall, as well as the distance from the edge. In this u
formized theory, the solution to the half line is given by

c~r !5cg~r !1D~u,u8,r ,k!eikr , ~2!

where cg(r ) is the solution given by geometrical optic
shown in Fig. 9. The diffraction coefficientD(u,u8,r ,k) is
given by @17,18#

a
le
d

y

FIG. 9. Diffraction from an infinite half line in 2D.
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D~u,u8,r ,k!52sgn~ai !K~ uai uAkr !1sgn~ar !K~ uar uAkr !,
~3!

ai ,r5A2 cosS u7u8

2 D , ~4!

andK(x) is a modified Fresnel integral@21#:

K~x!5
1

Ap
e2 ix22 ip/4E

x

`

eit 2
dt. ~5!

The anglesu,u8 are shown in Fig. 11. In the half-line prob
lem, u5p/2, because the incident wave is normal to t
wall. In addition, in Eq.~2! we understand that the origin o
the coordinate system is at the tip of the half line.

In Fig. 12 we compare the result of Eq.~2! to the exact
solution for the half line. The prediction of geometric opti
is also shown. There is very good agreement between
exact solution and the uniform geometric theory. Note es

FIG. 10. Reflected and diffracted rays from an infinite half lin
Diffracted rays are shown in dashed lines. The reflection
shadow boundaries are indicated. The wave is incident from
lower left corner of the figure, as indicated by the incident rays

FIG. 11. Angles of the incident and diffracted rays for use in E
~3!.
he
e-

cially that the discontinuities on the shadow and reflect
boundaries are completely removed by the uniform theor

VI. SEMICLASSICS IN THE ENERGY DOMAIN

Now we turn back to the problem of calculating the tran
mission properties of our resonator. We need to find an
pression for the Green function for the resonator, because
transmission can be easily written in terms of the diago
part of the energy Green function@22#,

T~E!}Re@ iG~rQPC,rQPC,E!#, ~6!

whererQPCis the center of the QPC. The physical reason t
G(rQPC,rQPC,E) appears in Eq.~6! is because all waves en
ter our resonator within a fraction of a wavelength of th
point. If a point source of waves is launched atrQPC with
energyE, the complex numberG(rQPC,rQPC,E) is just the
amplitude for returning torQPC. If a significant fraction of
the rays emanating from the point source return torQPC in
phase, thenG(rQPC,r QPC,E) will be appreciable, and the
returning waves will beat against the original wave and ha
a large effect on the transmission.

A. Geometric orbits in the semiclassical propagator

The 2D semiclassical energy Green functionGsc(r ,r 8,E)
can be written as a sum over paths fromr to r 8 thus @1#:

Gsc~r ,r 8,E!5
2p

~2p i !3/2 (
paths

1

AA
exp@ iS~r ,r 8!2 ipm/2#,

~7!

whereS(r ,r 8) is the action andm is the Maslov index for the
path. The stability coefficientA is given by

A5
]x' f

]pi
5 lim

Dpi→0

Dx' f

Dpi
, ~8!

using the definitions from Fig. 13, and whereDx' f is the
component ofDxf that is perpendicular top1 f .

The coefficientA describes the stability of trajectories b
ginning from a particular point in phase space. IfA is large,
then small changes in the initial direction of the trajecto
lead to large displacements in the final positions. More p
cisely, if the distanceDx' f grows exponentially with the

.
d
e

.

FIG. 12. Comparison of the geometric optics approximation,
uniform geometrical theory, and the exact solution for the diffra
tion of a quantum particle off an infinite half-line screen. The scre
extends from the lower center to the center of the picture. Plotte
the norm of the wave function,ucu. Note the stark discontinuities on
the shadow and reflection boundaries in the geometric optics
proximation. Regions of high probability amplitude are light.
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length of the trajectories, we say that the trajectories
chaotic. IfDx' f grows only linearly, then they are stable.

For the case of our resonator in the unstable regime, o
one type of orbit enters into the sum in Eq.~7!: the horizontal
orbit. Therefore, in order to find the contributions of th
geometric orbits to the transmission spectrum, we need o
the actions (S5kl, where l is the length of the orbit! and
stability coefficientsA for the primary horizontal orbit and its
repetitions. In addition, we need to keep track of the Mas
index for each orbit. A series of such orbits, together with
associated Maslov indices, is shown schematically in F
14~a!.

In this figure, the QPC/wall is located at the lower part
each diagram, while the reflector is located at the upper p
Each upward~downward! sloping line segment represen
part of a trajectory from the QPC~reflector! to the reflector
~QPC!. Maslov indices ofm52 are indicated for points
where the wave is reflected at the wall or arc reflector, and
index of m51 is acquired each time the ray passes thou
the focus on its return from the reflector toward the wall.

Figure 15 shows a transmission spectrum for the reson
in the unstable regime, computed using only the horizon
orbit. For this calculation, the sum in Eq.~7! was cut off after
the 20th term, that is, orbits of up to 20 round trips we
included in the sum. The half-wavelength periodicity of t
spectrum is clearly seen in the figure. Upon comparison w

FIG. 13. Two trajectories launched from the same point w
slightly different momentap1i and p2i . Each momentum has th
same magnitude; only the directions are different. The labelsi , f
stand for initial and final.

FIG. 14. Diagrams of orbits included into the semiclassi
Green function in Eq.~7!. In ~a!, the horizontal orbits are shown
The upper vertices represent bounces off the reflector, while
lower vertices signify reflections off the QPC. The Maslov indic
are shown for each part of each orbit, and the total index is gi
below each diagram. In~b!, the diffractive orbits are shown. Th
filled circle represents a diffraction event, where the term is mu
plied by the diffraction coefficientD. After a diffractive event, the
return path does not acquire a Maslov index of 1, because it
diffracted ray; only the specularly reflected rays participate in
caustic.
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Fig. 3, we see that the peak positions match very well w
the experimentally measured spectrum. Note, however,
absence of the peaks corresponding to diffractive or
which are present in Fig. 3. It is to the calculation of the
diffractive resonances that we now turn.

B. Diffractive orbits in the semiclassical propagator

So far, the Green function in Eq.~7! includes paths tha
undergo evolution under the free-particle Hamiltonian,
cluding bounces off the wall and mirror. In order to calcula
the spectral properties of the resonator semiclassically,
fractive orbits must be included into the sum over paths t
forms the semiclassical propagator. This problem has b
studied by a number of authors@2–4#. In the literature, much
attention has been focused on finding the effects of diffr
tion on the spectra of closed systems. However, in clo
systems, diffractive orbits generally play a minor role b
cause they are overwhelmed by the huge number of unst
periodic orbits that do not involve diffraction. In this sectio
these methods will be extended to include open systems

For our purposes, it is sufficient to include diffraction
the level of a single diffraction event per orbit. Althoug
multiply diffracted orbits strictly belong in the semiclassic
sum, in practice they can be safely neglected. This is beca
the amplitude of an incident ray on the reflector tip is sub
quently sprayed in all directions, so that only a small p
returns in a direction that eventually leads it back to t
QPC. Therefore, we will consider only singly diffracted o
bits. The Green function is the product of three amplitud
the first for going from the starting point to the point o
diffraction, the second for the diffraction event itself, and t
third for going from the diffraction point to the final point, a
follows:

Gdiff~r ,r 8,E!5Gsc~r ,rd ,E!D~ l 1 ,l 2 ,u1 ,u2 ,E!Gsc~rd ,r 8,E!

52
1

2p i (
paths

D~ l 1 ,l 2 ,u1 ,u2 ,E!

AA1A2

cosf1 cosf2

3exp@ i ~S11S1!2 ip~m11m2!/2#, ~9!

where the diffraction event occurs at positionrd , and the

l

e

n

-

a
e

FIG. 15. Semiclassical transmission including only the geom
ric orbits. The data are for fixed energy, corresponding tokR540,
with the distance between the wall and reflector varied along thx
axis.
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total path fromr to r 8 is made up of two legs, one of lengt
l 1, with stability coefficientA1, and the other of lengthl 2,
with stability coefficientA2. Each of these legs has an actio
S15kl1 , S25kl2 and Maslov indexm1 , m2 associated
with it. The factors cosf1, cosf2 represent the coupling o
each leg to the QPC, and will be discussed in the next s
tion. The various parameters are illustrated in Fig. 16 for o
of the shorter orbits, corresponding to the third term in F
14~b!. In that figure, the first few terms entering into Eq.~9!
are shown, and diffraction events are represented by fi
circles.

The diffraction coefficientD( l 1 ,l 2 ,u1 ,u2 ,E) depends on
the lengths of each leg as well as the angles that the inci
and diffracted ray make with the surface at the tip of t
obstacle. These various lengths and angles are shown in
16. The diffraction coefficient in the sum above is similar
that appearing in our study of the half line, differing only
the argument of the Fresnel integral. It is given by

D~u1 ,u2 ,l 1 ,l 2 ,k!52sgn~ai !KS uai uA kl1l 2

l 11 l 2
D

1sgn~ar !KS uar uA kl1l 2

l 11 l 2
D , ~10!

ai ,r5A2 cosS u17u2

2 D ,

andK(x) is the modified Fresnel integral defined in Eq.~5!.
The effect of the diffractive terms in the sum is shown

Fig. 17. For this calculation, all orbits with up to 20 roun
trips between the wall and mirror and zero or one diffract
events were included in the sum. We see that the effect o
diffractive terms is to modulate the geometric result, w
new peaks appearing to the right of the geometric peaks.
theoretical curve appearing in Fig. 17 is overlaid with t
experimental data in Fig. 3; the agreement between the
and experiment is quite good, in both the peak positions
widths of the geometric and diffractive peaks. We emphas
here that the semiclassical prediction breaks down

FIG. 16. Here are shown the various angles relevant to a
ticular diffractive orbit entering into the semiclassical Green fun
tion in Eq. ~9!. The first leg of the orbit,l 1, is drawn with a solid
line, and the second leg,l 2, is drawn with a dotted line. This orbi
corresponds to the third term in the sum shown in Fig. 14~b!.
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reflector/wall separations nearD5R, because there the focu
approaches the point where the Green function is evalua
and the semiclassical prediction diverges. This is the rea
for the incorrect, large transmission calculated atD5R.

In Fig. 18, we plot the semiclassically calculated tran
mission of the resonator in the unstable regime versus b
reflector/wall separation and wavelength. The parameters
identical to those of the experimental data shown in Fig.
The separation of the diffractive peaks from the Fabry-Pe´rot
peaks with increasing reflector/wall separation is quite cle

r-
- FIG. 17. Semiclassical transmission including both the geom
ric and diffractive orbits. The data are for fixed energy, correspo
ing to kR540, with the distance between the wall and reflec
varied along thex axis. The result without diffraction is shown with
a dashed line for comparison.

FIG. 18. Semiclassical conductance of the resonator ve
wavelength and reflector position in the unstable regime. The plo
exactly analogous to the experimental data shown on the right
of Fig. 7. Note that the semiclassical prediction breaks down n
D5R ~see text!.
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Two diffractive peaks per geometric peak are visible. T
half-wavelength periodicity is also apparent. The similar
between theory and experiment in Figs. 7 and 18 is strik

C. Semiclassical wave functions

In this section, we describe the procedure for includ
diffraction into a semiclassical calculation of the resona
wave functions. As in the previous sections, we can split
the sum over paths into a geometric part and a diffrac
part. The contribution toc from the geometric orbits is pro
portional to the semiclassical amplitude for getting from t
QPC to the point of interest:

cgeo~r !}Gsc~rQPC,r ,E!, ~11!

whererQPCis the location of the QPC andr is the location of
interest. This Green function is the same as we have alre
encountered in the semiclassical expression for the trans
sion neglecting diffraction, appearing in Eqs.~6! and ~7!.
The only difference is that now we are looking at an o
diagonal element of the Green function, rather than a dia
nal element. Some of the shorter trajectories that are
cluded in the sum are shown in Fig. 19~a!. All such
trajectories begin at the QPC and end at the pointr , under-
going specular reflection at the wall and reflector.

To include diffraction, we simply add diffractive terms t
the sum, much as we did to incorporate the effects of diffr
tion in the formula for the Green function in Eq.~9!. We
have

c~r !}Gsc~rQPC,r ,E!

1Gsc~rQPC,r tip ,E!D~ l 1 ,l 2 ,u1 ,u2 ,E!Gsc~r tip ,r ,E!,

~12!

where the diffraction coefficientD( l 1 ,l 2 ,u1 ,u2 ,E) is iden-
tical to that appearing in Eq.~10!. The lengthsl 1 ,l 2 and
anglesu1 ,u2 are defined the same way as in Fig. 16, with t
obvious difference that the final point of the trajectory is
longer the location of the QPC, but the location of interestr .
In Fig. 20 we show the result of a semiclassical calculat
for the wave functions pictured in Fig. 6. For comparison,

FIG. 19. In~a!, the two shortest geometric trajectories from t
QPC to the pointr are shown. Such orbits are specularly reflec
off the wall and mirror. In~b!, the two shortest diffractive trajecto
ries from the QPC to the pointr are drawn.
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also show the result when diffractive paths are left out of
sum. In the calculation, all singly diffracted paths involvin
up to 20 bounces were included.

We saw earlier that diffraction has a large effect on t
transmission spectrum, which in turn could be derived fro
the value of the wave function near the QPC. By contrast,
see now that the inclusion of diffraction has a relatively m
nor effect on the overall appearance of the wave functio
The explanation for this apparent paradox is that the QPC
near many reflection boundaries, where the diffractive c
rections are especially large.

The transmission through a small aperture~here the QPC!
is extremely sensitive to small returning bits of amplitud
which interfere coherently with the wave entering throu
the aperture to modulate the transmission. In our case, a
jor source of returning amplitude is provided by the diffra
tive orbits. This is analogous to scanning tunneling mic
scope ‘‘quantum corral’’ imaging@23#, where the tunneling
from the tip plays the role of the quantum point contact, a
reflections from atoms and impurities represent the diffr
tion and geometric scattering off the ends of the reflec
The modulation of the transmission through the QPC by
presence of the reflector can be understood in terms o
small returning wave amplitude beating against a mu
stronger ‘‘nascent’’ amplitude coming out of the QPC: if th
amplitude from the QPC in absence of the reflector isA, and
the returning amplitude with the reflector present isa, then

FIG. 20. Two wave functions calculated semiclassically. On
left, only the geometric paths were included in the sum; on the ri
trajectories that diffract off the edges of the reflector were tak
into account. These plots are for identical parameter sets as t
shown in Fig. 6.
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the total amplitude at the QPC is simplyA1a. The transmis-
sion will be proportional to the square of this amplitude,

T}uA1au25uAu21aA* 1a* A1uau2. ~13!

The two interference terms above, linear ina, are responsible
for all the structure in the transmission when the reflecto
present in the cavity.

VII. SEMICLASSICS IN THE TIME DOMAIN

Further evidence of diffractive orbits in the transmissi
spectrum can be obtained by analyzing the spectrum in
time domain. The two representations are related by the F
rier transform

g~ t !5E
2`

`

S11~v!eivtdt. ~14!

Hereg(t) represents the amplitude for a pulse launched fr
the QPC at timet50 to return at timet. That is, if a short
pulse were emitted from the antenna at timet50, echos
would return to the antenna at certain later times. Th
echos are indicated by peaks in the return spectrum. In

FIG. 21. Experimental return spectra in the~a! stable and~b!
unstable regime. Time has been converted to the ratioL/R, whereL
is the length of the orbit. For these plots the opening angle
115 °, and the reflector-wall separation was 28.5 cm and 32.5
respectively.
s

e
u-

e
g.

21, we plot the amplitudeug(t)u as a function of time for the
resonator in the stable and unstable regimes, where the
has been expressed in terms of orbit length viat5L/c, where
L is the length of the orbit andc is the speed of light.

In the stable regime, the echos persist for hundreds
bounces, indicating that indeed the dynamics is stable in
regime. In this regime, the lifetime of the states is limited
resistive losses in the copper plates of the resonator, w
was quite small: typical quality factors of the resonances
this regime wereQ;3000.~Losses due to the diffraction o
amplitude around the reflector are even smaller.! However,
in the unstable regime, the echos are significantly reduce
amplitude after only a few returns. For the first few retu
peaks,ug(t)u2 decays exponentially with a decay consta
given approximately by the Lyapunov exponent for the ho
zontal orbit. Later peaks, where diffractive orbits are mo
important, also decay exponentially but with a different d
cay constant.

In Fig. 22, we show an expanded view of some of t
return peaks shown in Fig. 21~b!. Of importance here is the
splitting of the return peaks that is visible on echos 5–9. T
splitting is due to the coexistence of orbits with slightly d
ferent periods. The longer of these orbits is just the horiz
tal orbit, which appears on the right of each group. The
peak of each group is made up of a family of diffractiv
orbits of nearly the same length. We have done a quantita
study of the lengths of the closed orbits and find excell
agreement with the observed splitting. The calculated leng
of the orbits appear in the plot as vertical bars above
peaks. The horizontal orbit length is marked with a long
bar. The lengths of all the orbits in units of the radius
curvature appear in Table I. The presence of this splitting
the return spectrum is strong evidence in support of the cl
that diffraction off the edges of the reflector supports oth
closed orbits, which lead to resonances in the transmis
spectra. Note that for the long orbits the diffractive peaks
even stronger than the peaks from the geometric orbit. T
is because the number of diffractive orbits increases line

s
,

FIG. 22. Experimental return spectra for the unstable regim
Time has been converted to the ratioL/R, whereL is the length of
the orbit. The splitting of the peaks clearly demonstrates the in
ence of both Fabry-Pe´rot type orbits~marked f ) and diffractive
orbits~markedd), which are slightly shorter. The calculated lengt
of the orbits are shown by vertical bars; short bars for the diffract
orbits, and longer bars for the horizontal orbit. For these plots
opening angle was 115 ° and the reflector/wall separation was
cm.
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with the length of the orbit, whereas there is always only o
geometric orbit, regardless of length.

VIII. THE AVOIDED CROSSING

We now turn our attention to the avoided crossing t
appears in Fig. 7 near (D2R)/R50. We mentioned earlie
that the level repulsion at this point is in part mediated
diffraction. To show this, we compare our open resona
with three closely related closed systems.

In the stable regime, imagine closing the QPC apert
and increasing the open angle of the arc-shaped reflecto

TABLE I. Lengths of the diffractive orbits.N is the number of
half bounces in orbit;N1 the number of half bounces in the first le
N2 the number of half bounces of the second leg;L1 the length of
the first leg;L2 the length of the second leg;L tot5L11L2 ; Lhor is
the length of the horizontal orbit;D5Lhor2L tot . The configuration
of the resonator for these data wasD51.0656R, a5115 °. All
numbers are given in terms of the radius of curvature of the refl
tor, which is taken to be unity.

N N1 N2 L1 L2 L tot Lhor D

2 1 1 1.036 58 1.036 58 2.073 16 2.131 14 0.05
4 3 1 3.120 29 1.036 58 4.156 87 4.262 28 0.10
6 3 3 3.120 29 3.120 29 6.240 58 6.393 42 0.15

5 1 5.224 41 1.036 58 6.260 99 0.132
8 5 3 5.224 41 3.120 29 8.344 70 8.524 56 0.17

7 1 7.343 15 1.036 58 8.379 73 0.144
10 5 5 5.224 41 5.224 41 10.4488 10.6557 0.20

7 3 7.343 15 3.120 29 10.4634 0.192
9 1 9.470 48 1.036 58 10.5071 0.148

12 7 5 7.341 35 5.224 41 12.5677 12.7868 0.19
9 3 9.470 48 3.120 29 12.5908 0.196
11 1 11.6009 1.036 58 12.6375 0.149

14 7 7 7.343 15 7.343 15 14.6863 14.9180 0.23
9 5 9.470 48 5.224 41 14.6949 0.223
11 3 11.6009 3.120 29 14.7212 0.196
13 1 13.7309 1.036 58 14.7675 0.150

16 9 7 9.470 48 7.343 15 16.8136 17.0491 0.23
11 5 11.6009 5.224 41 16.8253 0.223
13 3 13.7309 3.120 29 16.8512 0.197
15 1 15.8622 1.036 58 16.8988 0.150

18 9 9 9.470 48 9.470 48 18.9410 19.1803 0.23
11 7 11.6009 7.343 15 18.9441 0.236
13 5 13.7309 5.224 41 18.9553 0.225
15 3 15.8622 3.120 29 18.9825 0.197
17 1 17.9946 1.036 58 19.0312 0.149

20 11 9 11.6009 9.470 48 21.0714 21.3114 0.24
13 7 13.7309 7.343 15 21.0741 0.237
15 5 15.8622 5.22441 21.0866 0.224
17 3 17.9946 3.120 29 21.1149 0.196
19 1 20.1231 1.036 58 21.1597 0.151

22 11 11 11.6009 11.6009 23.3018 23.4425 0.24
13 9 13.7309 9.470 48 23.2014 0.241
15 7 15.8622 7.343 15 23.2054 0.237
17 5 17.9946 5.224 41 23.2190 0.223
19 3 20.1231 3.120 29 23.2434 0.199
21 1 22.2548 1.036 58 23.2914 0.151
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til it touches the straight wall. The resulting shape is one-h
of a lemon billiard@see Fig. 23~a!#. The shape of the lemon
billiard is determined by the parameterx0[(D2R)/R,0,
which is thex value of the center of curvature of the arc o
the right in units of the radius of curvature. The lemon b
liard has been studied before@8,9#; for our purposes it is
important that the classical dynamics in the lemon billiard
dominated by a large regular region.

As x0 is increased to 0, the area enclosed by the
becomes half of a perfect circle, and the closed system
comes completely integrable@see Fig. 23~b!#. The eigen-
states of a circular billiard areJ type Bessel functions. Fi-
nally, as x0 is made positive, the semicircular arc can
extended with horizontal straight segments to form half o
stadium billiard. The classical dynamics in the stadium b
liard is completely chaotic. See Fig. 23~c!.

The eigenstates of these three systems share certain
erties with the scattering states of our open system. In th
closed systems, there are no wall ends so we expect diff
tion to play a smaller role in the energies and wave functio
@24#.

The similarity between these closed systems and our r
nator is greatest in the stable regime. In this regime,
states of the resonator are essentially the same as the sta
the lemon billiard that are even about thex axis and odd
about they axis. ~The straight wall in the resonator lies o
the y axis, thus enforcing a node there, while the symme
position of the antenna means that it excites only states
are even about thex axis.! As the reflector position is varied
we correspondingly change the parameterx0,0 of the
lemon billiard, and compare the states of each system. In
experiment, we see an avoided crossing atx050. To inves-
tigate this, we can follow the states of the lemon/stadi
billiard as the parameterx0 is swept slowly through zero.

In Fig. 24~a! we plot the~even-about-x, odd-about-y) lev-
els of the lemon/stadium billiard as a function of the para
eterx05(D2R)/R and wavelength. On the right, the corr
sponding experimental transmission spectra for the o
system are shown. Notice the exact matching of the tra
mission peaks with the lemon billiard states in the sta
regime. This excellent agreement is an artifact of the f
that, while our resonator is a geometricallyopensystem, it is
classically closed, in the sense that almost all trajectorie
beginning at the QPC that hit the reflector are doomed
forever remain in the region between the wall and the refl
tor. We only begin to notice the ‘‘openness’’ of our resona
for the peaks corresponding to large numbers of ang
nodes. As we shall see, such states have a large an
spread, and it grows with decreasingx0, so that eventually
the caustics of the classical orbits supporting these st
approach the tip of the reflector. When this happens,

c-

7

FIG. 23. The lemon~a!, circle ~b!, and stadium~c! billiards. We
are interested only in states of these billiards that are even abou
x axis and odd about they axis.
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FIG. 24. On the left, the states of a close
billiard are shown, as the parameterx0 is varied.
For x0,0, the billiard is a lemon billiard; for
x050, it is a circle; forx0.0 it is a stadium. For
x0,0, we have darkened the lines correspondi
to the allowed states of the corresponding op
system~see Fig. 25 for the corresponding eige
functions!. On the right, the experimental trans
mission spectra for the open system are sho
for the same parameter range. Note the similar
of the figures in the rangex0,0, where the open
system exhibits stable classical dynamics.
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states broaden and disappear. For example, this is app
for the peak with quantum numbers~13,8! at aroundx05
20.1. The wave function corresponding to this peak has
radial nodes between they axis and the reflector, and eigh
angular nodes. The states with fewer angular nodes do
have such a wide angular extent, and therefore they do
disappear from the spectra until the reflector is farther fr
the wall.

It is apparent that there are many states in the clo
lemon billiard that do not appear at all in the analogous o
system. All such states have considerable amplitude nea
walls of the lemon billiard that are ‘‘missing’’ from the ope
resonator—therefore in the open system the analogous s
escape the resonator immediately. Thus they are abse
the experimental transmission spectra.

At x050, there is an avoided crossing in both the op
and closed systems. However, we see that the level repu
is stronger in the open system. For example, observe
level repulsion of the states~17,0! and ~16,2!. The distance
of closest approach of these two levels is four times gre
in the open system than in the closed system.~For the open
system, we judge the distance between the ‘‘levels’’ as
distance between the peak maxima.! Now, the major differ-
ence between the two systems as far as the eigenstate
concerned is the presence of diffractive orbits in the op
case. Semiclassically speaking, there are diffractive p
that go from one state to the other and introduce a coup
that increases the level splitting. Therefore, we believe
the avoided crossing is in large part mediated bydiffraction
in the open system.

For x0.0, the correspondence between the closed
open systems comes to a somewhat abrupt halt. This is
parent in Fig. 24. The reason is as follows. In the clos
system, orbits with times up to about the Heisenberg ti
tH[1/DE affect the properties of the quantum states. In
open system, on the other hand, only a few orbits from
very specific part of phase space stay in the system for m
than a few bounces. Therefore, we can expect states o
closed and open systems to correspond only if a signific
subset of trajectories remains in the nonescaping regio
ent
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phase space for roughly the Heisenberg time. Trajecto
that leave that region of phase space explore parts of p
space where the systems differ and the corresponde
breaks down. For the circle billiard at our experimental p
rameters, the particle makes approximately seven horizo
bounces within the Heisenberg time of the quarter stadiu

Using the 2D density of states, we can estimate the ra
of x0 for which we may expect rough correspondence
tween the eigenstates of the closed system and the r
nances of the open system in the unstable regime. The
another characteristic timetl , which we will call the
Lyapunov time, which is the characteristic time that it tak
for a trajectory to ‘‘fall off’’ the horizontal periodic orbit.
We expect correspondence whentH&tl . The Lyapunov
time is

tl5
L

klLyap
, ~15!

where L is the length of the periodic orbit,lLyap is the
Lyapunov exponent of the orbit, andk is the wave number
(L/k is the period of the orbit!. We will focus on the hori-
zontal orbit for the case where the system is just barely
stable, so thatL'2R. The Lyapunov exponent for the hor
zontal orbit is given by the logarithm of the large
eigenvalue of the monodromy matrix, linearized about
horizontal orbit,

M5S 112x0 2x0~11x0!

2 112x0 D ~16!

@10#. The largest eigenvalue of this matrix is given by

m15112x012Ax0~11x0!'112Ax0, ~17!

for small x0. Thus the Lyapunov exponent is

lLyap' ln~112Ax0!'2Ax0.
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Therefore, the Lyapunov time for the horizontal orbit is a
proximately

tl'
R

kAx0

. ~18!

This must be compared with the Heisenberg time, which
tH5A/2p5R2/8 ~the effective area of the billiard isA
5pR2/4 because of symmetry—we take only one quarte
the area of a full circle!. We expect the correspondence b
tween the open and closed systems to break down w
these times are of the same order. That is, we look for
value ofx0 for which tH'tl , which is

x0'S 8

kRD 2

. ~19!

Now, in our energy rangekR'18p. Thus we have for the
value ofx0 at which correspondence ceases to hold

x0'S 8

18p D 2

'0.02!
l

R
. ~20!

As indicated, this value ofx0 is much less than a wavelengt
scaled to the radius of the billiard. This means that the st
of the closed billiard already have mixed through a num
of avoided crossings by the time the circle has be
‘‘stretched’’ by one wavelength. Indeed, in Fig. 24 we s
that the first avoided crossings are already happening
x050.02, consistent with our rough estimate.

A sampling of states for the closed system of t
lemon/stadium billiard is shown in Fig. 25. In this figure, th
states corresponding to the series of quantum numbers (1
to (13,8) are shown, as the transition from a lemon to
stadium is made. The corresponding values ofk for each
state shown are given in Table II. The value ofx0 is given at
the top of each column. We see that the angular extent of
lemon billiard states increases with the number of angu
nodes, as mentioned previously. Asx0 approaches zero, th
angular extent of each state is fully developed and covers
entire billiard, as is required by the rotational symmetry
the circle billiard states. The transition from the first to t
second column in Fig. 25 isdiabatic, that is, from left to
right we track the states with the same character.

In the third column, we have plotted the states afterx0 has
been adiabatically increased to the small valuex050.02,
such that they still bear some resemblance to the states o
circle. This parameter value was chosen to be just before
first avoided crossing in the closed system, in accorda
with the discussion above. This effectively means that
periodic orbits are not too different from those of a circ
billiard; i.e., the periodic orbits are only weakly unstab
This means that one may still draw analogies between
closed and open systems in this regime, although the cha
ter of a particular resonance in the open system may
shared by several states in the corresponding closed sys
For example, note that the first two states in the third colu
have angular lobes that are qualitatively similar to the d
fractive state shown in Fig. 6. On the other hand, the th
and fourth states in that column have amplitude running fr
the center out along thex-axis, qualitatively similar to the
-
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Fabry-Pe´rot type state in Fig. 6. There is even the appeara
of a focus just to the right and left of the center of the billia
in these two states, analogous to the focus seen in the Fa
Pérot state for the open system.

In the last column, we plot the five wave functions aft
the parameterx0 has been adiabatically increased tox0

FIG. 25. Eigenfunctions of the lemon/stadium billiard. On th
top line is shown the parameterx0, which describes how far the
billiard is from a circle. On the left, we show some lemon billiar
eigenfunctions, together with their quantum numbers. To the rig
we show the eigenfunctions associated with each lemon state, a
parameterx0 is varied adiabatically tox050,0.02,0.2.

TABLE II. Eigenvaluesk for the states shown in Fig. 25. Th
quantum numbers in the first column are good only whenx0 is
negative or a small positive number. In the stadium regime,
classical dynamics is chaotic and there are no longer any g
quantum numbers; hence the quantum number assignment fox0

50.2 is only an indication of its adiabatic ancestor for smal
values ofx0. Note also that in the quantum numbering system
do not count the angular node along they axis. This is to keep the
analogy with the open system, where that node is trivial as it
forced by the position of the wall.

x0

(n,m) 20.2 0.0 0.02 0.2

~17,0! 71.3806 57.3275 56.8273 51.8407
~16,2! 70.2283 57.2577 56.4768 51.6105
~15,4! 69.0855 57.1173 56.2240 51.3391
~14,6! 67.9527 56.9052 56.1205 50.2602
~13,8! 66.8308 56.6196 55.8705 50.7444
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50.2, or 20% of the radius of curvature. Now we see that
states no longer have anything to do with the states of
open system, exactly for the reasons given above.

IX. IMAGING WAVE FUNCTIONS WITH A COARSE
PROBE

We end this paper with an interesting discovery that w
made in the course of carrying out the measurements
scribed above: namely, the possibility of measuring an e
tronic wave function in a 2DEG. The viability of measurin
pure state wave functions in the context of microwave b
liard systems has been demonstrated by many authors@12–
15#. However, the imaging of a wave function in areal quan-
tum system has not yet been achieved.

We believe a technique similar to the method used h
could be applied in clean mesoscopic systems to obtain
ages of two-dimensional wave functions in a 2DEG. In su
systems, the Fermi wavelengthl of the electrons is on the
order of 50 Å. In analogy to the steel ball used in the m
crowave experiments, an atomic force microscope~AFM! tip
held close to the surface of the heterostructure could serv
a perturbation to measure the frequency shifts. However,
perturbation due to a nearby AFM tip on the electron wa
function is a smooth potential disturbance 50–100 Å in si
comparable to or greater thanl. One might expect that i
would be difficult to measure the nodal lines of a wavefun
tion with such a coarse probe. To investigate this proble
we tried measuring a microwave mode with a coarse pro
Instead of the small steel ball, we used a probe 8 cm in s
corresponding to 1.5 wavelengths, for these measurem
The probe is shown in Fig. 26. It is approximately a ‘‘chord
of a sphere. The probe could be moved around the up
surface of the top plate of the cavity by means of an exte
magnet, in a manner similar to that used for the steel
perturbation. For a discussion of the form of the perturbat
caused by this probe, see Appendix B.

The results of a wave function measurement of the p
d1 with the coarse probe are displayed in Fig. 27. Only h
of the wave function was measured. For comparison,
same state as measured by the 4 mm ball is shown as
Note that far from the QPC the nodal lines in the two me
surements match very well. For the coarse measurem
data near the wall and mirror were unavailable because o
large size of the probe. The level of detail obtained with
coarse probe is surprising, considering that it was overthree
half wavelengths in diameter. This result suggests it migh
possible to image an electron wave function directly in
2DEG. A perturbative analysis of the effect of the coa
probe is presented in Appendix B.

FIG. 26. A cross section down a diameter of the coarse pr
used for measuring the microwave field. It has cylindrical symme
about the center axis.
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X. CONCLUSION

In summary, we have demonstrated the existence of
fractive orbits in an open microwave billiard, which give ris
to resonances and wave functions that would not be p
dicted by a simple semiclassical theory. Such orbits are
importance in open, unstable systems where the numbe
unstable classical periodic orbits is small. In such syste
diffraction can play a major role in determining the spectru
of the system. Furthermore, we have shown that it may
possible to measure the pure state wave function of an e
tron in a 2DEG, by using a a coarse AFM tip as a probe.
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APPENDIX A: MASLOV INDICES

In the experiment, the antenna is placed very close to,
not exactly at, the wall. This means there are in factfour
orbits associated with each single orbit in the billiard wh
the source is placed exactly at the wall. The four orbits
sociated with the shortest horizontal orbit are shown in F
28. Each orbit in this family has a different total Maslo
index and length, summarized in Table III.

We can find the effect of grouping these four orbits into
single orbit by computing the sum

e
y

FIG. 27. A comparison between fine and coarse measurem
probes. The sizes of the probes are indicated by circles in the lo
left corner of each graph. In the upper plot, an arrow marks
probe. The ticks on all axes are 10 cm apart.



a
s
s

r

gl
a

lo

c-

ust

ling

ng
o a
sed

ed

so-in

tly
rb
ta
a
d
th
a

PRE 62 4887INFLUENCE OF DIFFRACTION ON THE SPECTRUM . . .
AeiSeff2 ipmeff/25 (
n5a,b,g,d

eiSn2 ipmn/2, ~A1!

where the sum is over the four orbits asd→0. The coeffi-
cient A will be found by doing the sum. We have

AeiSeff2 ipmeff/25e2ik(D2d)23p i /212e2ikD25p i /2

1e2ik(D1d)27p i /2

5e2ikD25p i /2~22e2ikd2e22ikd!

5e2ikD25p i /2@222 cos~2kd!#

'~2kd!2e2ikD25p i /2. ~A2!

Thus we have thatA5(2kd)2, meff55, andSeff52kD, as
expected.

A similar analysis on orbits coming to the antenna at
angle shows that the coupling to the antenna varies as cof,
as stated in Eq.~9!. Referring to Fig. 29, a source of ray
begins at the pointP, and two of the rays find their way to
the antenna. The direct path has lengthL1 and Maslov index
m150. The second path first bounces off the wall befo
arriving at the antenna, and has lengthL2 and Maslov index
m251. We want to combine these two paths into a sin
trajectory, by doing a sum over the two trajectories as w
done above, in order to find the effective action and Mas
index for the trajectory. We further define the lengthL0,
which is the distance betweenP and the intersection of the
wall with the axis of symmetry. The two lengthsL1 andL2
are given by

TABLE III. Lengths and Maslov indices for the orbits shown
Fig. 28.

Orbit Length Maslov index

a 2(D2d) 3
b 2D 5
g 2D 5
d 2(D1d) 7

FIG. 28. Four orbits associated with the shortest horizontal o
when the antenna is displaced from the wall. The trajectories s
from the filled circles and end on the open circles. These circles
really the same point, namely, the antenna position; they are
placed from each other in the figure so that the four distinct pa
are visible. The Maslov indices acquired on each segment of e
orbit are indicated. The antenna is a distanced away from the wall,
and the horizontal distance from the wall to the reflector isD.
n

e

e
s
v

L1,25A~L0 cosf7d!21~L0 sinf!2'L07d cosf,
~A3!

wheref is the angle between the trajectoryL and thex axis,
and 2 and 1 correspond to trajectories 1 and 2, respe
tively. The sum over orbits is then

eiSeff2 ipmeff/25eiS11eiS22 ip

52 cos~kd cosf2 ip/2!eikL02 ip/2

'2kd cosfeikL02 ip/2. ~A4!

As expected, the effective action for the two paths is j
Seff5kL0, and the Maslov index ismeff51. The factor cosf
appearing above is exactly the angular-dependent coup
coefficient appearing in Eq.~9!. This is just the simple an-
gular dependence of ap-wave point source.

APPENDIX B: EFFECT OF A COARSE PROBE

In this section we derive an effective potential describi
the perturbation to a TEM microwave resonance due t
coarse probe. For simplicity we consider the case of a clo
cavity. The electric fieldE(r ,t)5ReE(r )e2 ivt and magnetic
field B(r ,t)5ReB(r )e2 ivt of such a state can be express
in terms of the quantum analog statec(x,y) as follows:

E~x,y,z!5
1

h1/2
c~x,y!ẑ, ~B1!

B~x,y,z!5
1

h1/2

1

ik S ]c

]y
x̂2

]c

]x
ŷD . ~B2!

The height of the cavity in thez direction is denoted byh.
~We use the normalization conventions*dx*dyc2

5*dr uEu25*dr uBu251.!
The perturbation to the frequency of a microwave re

nance by a conducting probe is@16#

v22v0
2

v2
5E

DV
dr @ uB~r !u22uE~r !u2# ~B3!

5
1

hE dxE dydhS 1

k2
~¹c!22c2D , ~B4!

FIG. 29. Two trajectories arriving at the antenna from sligh
different angles. The antenna is a distanced from the wall, as in the
previous discussion.
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wherev0 is the unperturbed frequency anddh(x,y) is the
thickness of the probe. The volume integral is over the v
ume excluded by the probe; the second line follows beca
the fields have noz dependence. From the chain rule and t
Helmholtz equation,

dh~¹c!25¹•@dhc¹c2 1
2 ¹~dh!c2#1k2dhc2

1 1
2 ¹2~dh!c2. ~B5!

Substitute Eq.~B5! into Eq.~B4!. Sincedh is localized away
from the lateral boundaries of the cavity, the surface term
Eq. ~B4! vanish and we are left with

v22v0
2

v2
5

1

k2E dxE dy
1

2

¹2~dh!

h
c2. ~B6!

Therefore, to first order in perturbation theory, the coa
probe can be thought of as an effective perturbing poten
of the form
cs

et

et

bl

il

n-

tat
l-
se
e

of

e
al

Veff~x,y!}¹2
dh~x,y!

h
. ~B7!

Note that Eq.~B7! implies that the area integral ofVeff van-
ishes, which is a significant constraint on the type of pot
tial that can be modeled by a conducting probe in a mic
wave cavity. In particular, the perturbation of a 2DEG by
AFM tip would not have this property.

In the case of our probe,dh/h' f @12(r/r0)2# wherer is
the distance from the center of the probe,r0540 mm, and
f 50.4, so

Veff'2
4 f

r0
2

1
2 f

r0
d~r2r0!; ~B8!

in other words, the probe’s effective potential is a flat w
surrounded by a repulsive ring at the probe’s circumferen
-
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