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Influence of diffraction on the spectrum and wave functions of an open system

J. S. HerscH,M. R. Haggerty! and E. J. Heller
IDepartment of Physics, Harvard University, Cambridge, Massachusetts 02138
2Department of Chemistry and Department of Physics, Harvard University, Cambridge, Massachusetts 02138
(Received 10 March 2000

In this paper, we demonstrate the existence and significance of diffractive orbits in an open microwave
billiard, both experimentally and theoretically. Orbits that diffract off a sharp edge of the system are found to
have a strong influence on the transmission spectrum of the system, especially in the regime where there are no
stable classical orbits. On resonance, the wave functions are influenced by both classical and diffractive orbits.
Off resonance, the wave functions are determined by the constructive interference of multiple transient, non-
periodic orbits. Experimental, numerical, and semiclassical results are presented.

PACS numbd(s): 05.45—-a

[. INTRODUCTION wave functions. In Sec. V we provide a short introduction to
the geometric theory of diffraction, which is the theory that

In this work, we discuss the transmission spectrum andlescribes how diffractive rays contribute to the semiclassical
wave functions of an open resonator coupled to a quantur@lescription of a quantum mechanical wave function. In Sec.
point contact(QPO. The system exhibits both stable and VI we show in detail how the geometric theory of diffraction
unstable dynamics, depending on the value of a single pe{s incorporated into the semiclassical trace formula. Here
rameter. The spectral properties of the resonator are detdheoretical results are seen to be in excellent agreement with
mined by the interference of closétbot necessarily periodic ~Measured data. In Sec. VIl the physics of the resonator in the
orbits that begin and end at the QPC. Semiclassically, onme domain is discussed, and again very good agreement
computes the transmission of such a system with a sum ovdetween theoretical and experimental observations is found.
the classicaltrajectories. However, it was found experimen- In Sec. VIl we discuss the behavior of the system as the
ta”y that there were many resonances in the Spectrum Whicﬁansition between stable and unstable dynamiCS is Crossed,
did not appear in the theory when classical trajectories in2s Well as analogies of the open resonator with some well-
volving only specular reflection were considered. We founcknown closed systems, namely, the lemon and stadium bil-
that the missing resonances were reproduced only whan  liards. Finally, in Sec. IX we discuss the possibility of imag-
classicalclosed orbits that undergtiffraction were included iNg @ pure state quantum mechanical wave function in a
into the semiclassical sum for the transmission. mesoscopic system with the help of an atomic force micro-

This issue of including diffraction into the semiclassical SCOPe, with concluding remarks in Sec. X. A short paper
propagator has been considered by various authors, for bofiscussing the experimental results presented here has been
closed system§2—4] and open systemis]. The basis for Previously published6]. See alsq7].
many of these treatments is the geometric theory of diffrac-
tion, originated by KeIIe{ZO]. A_distinguishing feat_ure of Il. THE RESONATOR
the work presented here is that, in the unstable regime of our
resonator, the effect of the diffractive orbits is of the same Recently, Katineet al. studied the transmission behavior
order as that of the purely classical orbits. A consequence aff an open quantum billiard in the context of a two-
this is that there are as maitgr more resonances that are dimensional electron ga2DEG) in a GaAs/AlGaAs hetero-
supported by diffractive orbits as are supported by simplestructure[8]. Their resonator was formed by a wall with a
classical orbits. This is related to the fact that there is onlysmall aperture(the QPQ, and an arc-shaped reflector. A
one classical closed orbit in our system in the unstable reschematic of this resonator is shown in Fig. 1. The voltage
gime. This is in stark contrast to the case of a closed, unen the reflector could be varied, effectively moving the re-
stable(chaotig system. Normally, for a closed system, dif- flector toward or away from the wall. Their measurements
fraction plays a minor role because of the overwhelmingshowed a series of conductance peaks, analogous to those
number of nondiffractive periodic orbits present. However,seen in a Fabry-Ret resonator, as the reflector position was
when the system is open, the great majority of long periodic/aried.
orbits might vanish, if they are allowed to escape the system. An interesting property of the resonator considered here is
In such a case, where only a very small number of classicaghat it is geometricallyopen but in the stable regime it is
periodic orbits are present, diffractive orbits may gain in im-classically closed In the unstable regime, the resonance
portance and considerably affect the spectrum of the systerproperties of the billiard are determined in large partdify
This situation is realized by our resonator. fraction.

The paper is organized as follows. In Sec. Il, we discuss The resonator shown in Fig. 1 has two distinct modes of
the resonator being studied. In Sec. lll, we describe the exaperation. When the center of curvature of the reflector is to
perimental apparatus. In Sec. IV, we present the experimerihe left of the wall(the regime studied if8]), then almost all
tal results, which are comprised of measured spectra andassical paths starting from the QPC that hit the reflector
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. . . FIG. 2. The microwave analog of the mesoscopic resonator
'.:IG' 1.@A S(_:hemajtlc of the mesoscopic r_esonator studied bystudied by Katineet al. [8]. The antenna simulates the QPC; to
Katine et al. [8] with radius of curvatureR, opening anglex, and

reflector-wall separatioB. Electrons impinge on the wall from the Sg?cﬁhgsdcrg\t‘v?rlllg?stﬁ ;th for;e:;r;ator, itis placed very close to the
left, and the conductance to the region on the right is meas(sed. ' '

Two closed orbits of the unstable resonator: diffractiaetted ling

and horizontal(dashed ling These will be discussed later in the ing insufficient energy resolution to resolve the diffractive
paper. peaks[11].

remain forever in the region between wall and the reflector:
the dynamics is stable and the periodic orbits can be semi- IIl. EXPERIMENT

classically quanti.zed. Each quantized mode of the rgsonator Because of the problems of dissipation and decoherence
can be characterized by two quantum numbersn), which iy the mesoscopic experiments, we decided to investigate a
represent the number of radial and angular nodes, respegarallel-plate microwave resonator with a similar geometry.
tively. As the reflector-wall separation is varied, the conduc{n microwave experiments, decoherence and dissipation are
tance exhibits a peak each time one of these quantized modast a problem, the geometry of the resonator can be specified
is allowed. Once an electron is in the resonator, the only waynuch more accurately, and the dynamical range of available
for it to leave is by tunneling back through the QPC or bywavelengths is much larger. The experimental setup is
diffracting around the reflector; since both processes arshown in Fig. 2.
slow, the resonances have narrow widths. Because the QPC The equation governing the component of the electric
is on the symmetry axis, only modes with evarare excited field normal to the plates for the TEM mode is identical to
significantly. The states of the resonator in the stable regimthe two-dimensional time-independent Salinger equation
bear a strong resemblance to a certain symmetry class 612-15. Therefore, by studying the modes of parallel-plate
states in a lemon-shaped billiaf@]. This class has even resonators we can gain insight into the behavior of two-
symmetry about the short axis of the lemon, and odd symdimensional solutions to the Scldiager equation.
metry about the long axis. This connection will be explored The resonator consisted of two parallel copper plates, 1 m
more fully in Sec. VIII. square, separated by a distance of 1.25 cm. One side of the
When the center of curvature is to the right of the wall, resonator consisted of a copper wall. The other three sides
however, the dynamics becomes unstable: all classical trajegvere lined with a 11.5 cm thick layer of microwave absorber
tories beginning at the QPC rapidly bounce out of the resotC-RAM LF-79, Cuming Microwave Corpdesigned to pro-
nator, except for a single unstable periodic orbit along thevide 20 dB of attenuation in the reflected wave intensity in
axis of symmetry, which we will call the “horizontal” orbit the range 0.6—-40 GHz. The absorber prevented outgoing
[see Fig. 1b)]. The horizontal orbit is a member of a class of waves from returning to the resonator, thereby simulating an
orbits that we call “geometric,” because their paths are gov-open system in the directions away from the wall. An an-
erned by specular reflection off the wall and reflector, andenna was inserted normal to the plates, 2 mm from the wall,
they do not undergo diffraction. Although the horizontal or-to simulate the QPC. The curved reflector was formed from a
bit returns to the QPC, the electron has a low probability ofrectangular aluminum rod bent into an arc with radius of
escaping the resonator there because the QPC is muchirvature R=30.5 cm. Various opening angles were
smaller than the de Broglie wavelength of the electron. Beused: 115°, 112°, 109°, and 106 °.
cause the horizontal orbit is the only periodic orbit in the Instead of measuring the transmission of the resonator, we
unstable regime, one might expect resonant buildup onlyneasured the reflection back from the antenna; for this we
along the symmetry axis. Such a spectrum would be quasiised an HP8720D network analyzer in “reflection” mode
one-dimensional, with only the half-wavelength periodicity (the complexS;; parameter of the resonator was measured
of a Fabry-Peot cavity. However, in numerical simulations We inferred the transmission probabilitf|? via |T|?=1
it was found that there are other transmission resonances in|R|?, whereR=S,, is the measured reflection coefficient.
the unstable regime that do not correspond to any classiclecause of the proximity of the antenna to the wall, it was
periodic orbits[10]. It was proposed that these anomalousonly weakly coupled to the resonator; therefore, in the ab-
peaks are supported by diffraction off the tips of the reflec-sence of the reflector, the transmission coefficient was close
tor. Unfortunately, in the mesoscopic experiments, decoherto zero. However, when the reflector was present, the trans-
ence of the electron wave by impurities in the GaAs/AlGaAsmission experienced pronounced maxima at certain frequen-
heterostructure shortens the lifetime of the resonances, leavies.
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FIG. 3. Experimental transmission versus reflector-wall separa-
tion at a fixed frequency of 5.63 GHz; i.eR=5.7\. The

stable/unstable transition point occurs at abscissa zero. In the stable microwave
regime, the peaks are labeled by their radial and angular quantum / absorber
numbers (,m). In the unstable regime, the diffractive resonances

(labeledd) appear to the right of the Fabry@e peakslabeledf).

The dashed curve is the result of a semiclassical calculation that

takes diffractive orbits into accourisee text. The opening angle FIG. 5. Diffractive peaks were removed from the spectrum by
for the reflector wasr=106 °. With the reflector removed from the placing microwave absorber near the tips of the reflector, as indi-
cavity, the transmission was 0.15 in these units. cated.

IV. RESULTS rors. The second type, labelédis supported by diffraction
off the tips of the reflector.

In Fig. 3 we show a transmission spectrum at fixed fre- o . .
guency, as the distance between the wall and reflector is We verified experimentally that the peaks were indeed

varied. In the stable regime, we see that the peaks are narro%Jpportecj by diffraction by surrounding the tips of the reflec-

and well defined. This is because the dynamics is stable i with microwave absorber and repeating the experiment,

this regime: nearly all trajectories starting from the QPC that®> indicated in Fig. 5. When this was d(_)ne, the FabmpPe

. . : ) esonances were unaffected, but the diffractive peaks were
hit the reflector remain forever in the region between the Walrentirel eliminated from the spectrum. This makes sense be-
and the reflector. In this regime, there exist invariant tori, y P )

which may be semiclassically quantized to produce the stateg 1S€ the gradually thickening absorber smoothly attenuated

of the stable resonator. Such a classical orbit is shown in Fi [eflections from rays coming near the tip, leaving no sharp

4, along with its quantum mechanical wavefunction countergzd iscontinuity from V.Vh'Ch rays could.dn‘fract.
The wave functions corresponding to pedksand d;

part. We see that the trajectory does not approach the region. e measured using the technigue of Maier and STAGIr

where the resonator is open. Thus, it behaves as if the cavi h howed that the fr N hift of iven resonan
were closed—hence the narrow widths of the peaks in the €y showe at the frequency shitt of a given resonance
due to a small sphere of radiugat a position X,y) is given

stable regime.
In the unstable regime, the transmission curve is quitt?y
different. Here, there are two types of resonances. The first

type, labeledf in Fig. 3, is related to the horizontal orbit wZ_w(Z) o1, )
along the axis of symmetry, and bears some resemblance to a 2 —4mro| 5 Haxy) —Eg(xy) |, 1)
Fabry-Peot type resonance between two half-silvered mir- “o

whereE, andHg are the unperturbed electric and magnetic
fields. Thus, the frequency shift is proportional to the local
intensity of the microwave field, and by measuring the shift
as a function of the position of the sphere the field intensity
of a particular mode can be mapped out. Note that the fre-
quency shift is positive in regions where the magnetic field is
large, and negative where the electric field is large. Also, the
factor of 1/2 multiplying the magnetic field in EQL) indi-

LW

LA

::::::::""“ " cates that the sphere is a stronger perturbation to the electric
|""” WLUIT field than the magnetic field. In our measurements, we found
”I[” this to be the case: the shifts were predominantly negative.

//// Appreciable positive shifts were found only at the nodes of

the electric field, corresponding to maxima of the magnetic
field.

Figure 6 shows theoretical quantum wave functions com-
pared with experimentally measured frequency shifts for the
resonances labeled Hy andd; in Fig. 3. The theoretical

FIG. 4. On the left is a classical trajectory starting at the QPCwave functions were generated using Edwards’ wavelet
On the right is the corresponding computed wave function. method presented iL0].
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FIG. 7. Experimental transmission versus reflector-wall separa-
tion and wavelength. High transmission regions are dark. On the
left of the vertical dotted line is the stable regime, where the trans-
mission peaks are sharp. The quantum numbems) are indicated

for many of the peaks. On the right is the unstable regime, where

FIG. 6. Comparison between theoretical quantum wave funcihe resonances become wider and diffractive orbits become impor-
tions (left) and experimentally measured microwave frequencytant. Transmission peaks supported by diffractive orbits are marked
shifts (right). The two modes correspond to pedksandd,, re- by d.
spectively, in Fig. 3. The wall is located on the left vertical axis in . . . .
ezch plo)t/, and ?he reflector position is indicated by the arc. Théhe t'p_ of the mirror to_ th_e QP(_:' but in the qnstable regime
graph ticks are 10 cm apart. The fine grid indicates the spacing dhere is no;lassmalpenodm orbit that does this. Later in the
the experimentally sampled poinigrid spacing 1 ci paper, it will be shown that states suchdgsare supported

by orbits that undergdiffraction off the tips of the reflector.

The measured frequency shift is plotted as a function ofOne such orbit is shown in Fig.(d). Rays that hit the
sphere position. For these measurements, we used a steehooth surfaces of the reflector or wall undergo specular
bead of diameter 4.0 mm for the perturbation. The bead iseflection, whereas the rays that hit near the reflector tips can
small enough that it shifts the peaks by much less than thbe diffracted. A fraction of the wave amplitude can then
separation between peaks. The bead was rastered over tleturn to the QPC from this region, thus setting upan-
inside of the cavity by means of an external magnet. Thatlassicalclosed orbit. All peaks labeled withdin Fig. 3 are
way, the bead could be moved around inside the cavity withsupported by such diffractive orbits.
out taking the cavity apart. It is important to note that the Numerical calculations have shown that for energies off
frequency shift is not proportional t&?, but rather toH?/2  resonance, the quantum wave function is often intermediate
—EZ2. Therefore we show only negative contour lines belowbetween those shown fd andd;, in the sense that ampli-
20% of the maximum negative shift, and thereby emphasizéude seems to be running from the QPC to some point be-
regions of strong electric field. The similarity between theorytween the center and the tip of the refledtdd]. This can be
and experiment is striking. understood in terms of the interference of paths with each

The wave function labeledl; in Fig. 6 is clearly associ- other as they “walk off” the horizontal orbit and escape the
ated with the horizontal orbit along the axis of symmetry.resonator. Thus diffraction does not necessarily play a major
Rays emanating from a point source located on the axis afole in determining the off-resonance wave functions. How-
symmetry next to the wall bounce off the reflector and comeever, diffraction is instrumental in determining the on-
to an approximate focus about 10 cm from the source. Theesonance wave functions underlying the conductance peaks
focus is approximate because of spheri@al in this case d; andd, in Fig. 3. Figure 7 shows a more global picture of
cylindrical) aberration. the transmission properties of the resonator.

Now we turn our attention to the state labetbdn Fig. 6. Here we plot the transmission of the resonator as both the
As noted above, the only periodic orbit in the unstable re.wavelength and the reflector-wall separation are varied. Each
gime is the horizontal orbit, along the axis of symmetry. Thevertical slice through this figure is a frequency spectrum with
pictured wave function, however, clearly has very little am-fixed reflector position; the dotted line marks the classical
plitude along this periodic orbit. Instead the wave functiontransition from stable to unstable motion that occurs when
has a band of higher amplitude running from the region ofthe reflector’s center of curvature moves to the right of the
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FIG. 8. In this figure, we show the angular dependence of a V. GEOMETRIC THEORY OF DIEERACTION
diffractive state as the reflector is moved through the stable/unstable

transition. Plotted is the amplitude of the frequency shifts measured Before we consider the problem of computing semiclassi-
1 cm away from the reflector. The value d ¢ R)/R is indicated ~ cally the transmission properties of our resonator, let us
for each curve. The tips of the reflector are indicated on the plot bystudy the simpler problem of diffraction of a plane wave off
vertical dashed lines. an infinite half line in 2D. This problem will serve as a good
introduction into the geometrical theory of diffraction, which

QPC. The vertical axis indicates how many wavelengths ﬁ'yvill be used to include diffraction into the semiclassical
: Ipropagator.

along the _h_orlzontal orbit between the QPC and the reflector. The problem is illustrated in Fig. 9. A plane wagé* is
The repetition of the resonance pattern every half wavelength

in th iical direction i | 1o the half | thnormaIIy incident on the half line from the left. The half-line
In the vertical direction 1S analogous 1o the half-wavelengtig, o ngg up from the middle of the figure, indicated by the

periodihcity Ofb"’Il Fabry—Pr@thcavity.k h b labeled wi dark line. We take the tip of the line to be our coordinate
In the stable regime the peaks have been labele W'tBrigin. Within the geometrical optics approximation, the

their quantum n_umberm(m). Because of the choice of ver- o ohiem s divided into three separate regions: those of trans-
tical axis, them=0 resonance peaks are approximately hori-yissjon, reflection, and shadow, labeled 1, II, and IIl, respec-

zontal in this figure. As the stable/unstable transition is aPtively. The values of the wave function in each region are
proached, the peaks with higin disappear one by one jngicated in the figure as well. In region I, the wave does not

because their large angular sizes allow them to escapg the wall and thus is unchanged within the geometric op-

around the reflector. y __tics approximation. In region I, the wave is perfectly re-
At the stable/unstable transition, all of the resonances in fected and thus a standing sine wave is set up there. |

family would be approximately degenerate, but instead ther?egion IIl, we have a perfect shadow region, which is com-

is an_avoided_crossing. Th_e level repulsio_n i? caused _by ﬁletely dark. Along the reflection and shadow boundaries
coupling that is partly mediated by diffraction; this subjectjngjicated, the solution is discontinuous. Of course, these dis-
will be .explored more thoroughly in Sec. Vil . continuities are not present in the exact solution; they are an

In Fig. 8 the angular dependence of a diffractive state i, iact of the geometric approximation. As we shall see, it is

shown as the reflector is passed adiabatically through thge gitfraction off the tip of the wall that corrects these dis-
stable/unstable transition point. In the stable region, most of,htinuities.

the amplitude is along the symmetry_ axis. As the reflector In 1962, Keller showed that one can think of diffraction
moves further from the wall, the amplitude slowly separates,¢ originating from a group of “diffracted rays" originating

into two lobes, with very little in the center. When the re- .. the edge of the wa[l20]. The idea is illustrated in Fig.
flector is only slightly in the unstable region, there are bands; Away from the shadow and reflection boundaries, these
of amplitude running to a point on the re_:flector intermediateyittracted rays have the form of an outgoing cylinder wave,
between the center and the tips, as in the curve @r ( yiiplied by an angle-dependent “diffraction coefficient.”
—R)/R=0.016 in Fig. 8. » , _However, Keller's original theory was shown to be invalid
In the unstable regime, the only remaining classical periy the reflection and shadow boundaries. A properly uni-
odic orbit is the horizontal orbit, which itself becomes un-ormized geometric theory of diffraction was developed by
stable. The Fabry-RPet peak(labeledf in Fig. 7) is essen-  kquyoumjian and Pathakl9]. The diffracted rays are mul-
tially quantized along the horizontal orbit, so its pos't'ontiplied by a suitable complex number that depends on both

shows a simple dependence on reflector position. It becomgfe angles of the incident and diffracted rays relative to the
broad in the unstable regime, with a lifetime given by they o)~ as well as the distance from the edge. In this uni-

classical Lyapunov stability exponent of the horizontal orbit.¢5mized theory, the solution to the half line is given by
Two diffractive resonancedabeled byd) are also visible in

each family; they separate from the Fabryd®eype peak as P(r)=iy(r)+D(0,0',1,k)e™, 2
the reflector is moved away from the wall. The diffractive

peaks labeled byl in Fig. 7 cannot be explained by semi- where ¢(r) is the solution given by geometrical optics,
classical theory unless diffraction off the tips of the reflectorshown in Fig. 9. The diffraction coefficie®@(6,0’,r,k) is

is included, as will be shown in the following sections. given by[17,1§

n
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Geometric optics Exact solution

Uniform geometric theory

FIG. 12. Comparison of the geometric optics approximation, the
uniform geometrical theory, and the exact solution for the diffrac-
tion of a quantum particle off an infinite half-line screen. The screen
extends from the lower center to the center of the picture. Plotted is
the norm of the wave functioy|. Note the stark discontinuities on
the shadow and reflection boundaries in the geometric optics ap-
proximation. Regions of high probability amplitude are light.

cially that the discontinuities on the shadow and reflection
boundaries are completely removed by the uniform theory.

VI. SEMICLASSICS IN THE ENERGY DOMAIN

Now we turn back to the problem of calculating the trans-
mission properties of our resonator. We need to find an ex-

Diffracted rays are shown in dashed lines. The reflection andPression for the Green function for the resonator, because the
shadow boundaries are indicated. The wave is incident from th&@ansmission can be easily written in terms of the diagonal

lower left corner of the figure, as indicated by the incident rays.

D(6,0'.r,k)=—sgr(a)K(|aj| vkr)+sgr(a, ) K(|a,|Vkr),
()

0+ 0’
ai,r=\/5005< +2 ) 4
andK(x) is a modified Fresnel integré21]:
K(X): ie*ixzfi‘ﬂ/‘leeitzdt. (5)
N x

The anglesy, #' are shown in Fig. 11. In the half-line prob-

lem, 6= /2, because the incident wave is normal to the

wall. In addition, in Eq.(2) we understand that the origin of
the coordinate system is at the tip of the half line.

In Fig. 12 we compare the result of E@) to the exact
solution for the half line. The prediction of geometric optics

is also shown. There is very good agreement between the
exact solution and the uniform geometric theory. Note espe-

diffracted ray

incident ray

FIG. 11. Angles of the incident and diffracted rays for use in Eq.

3.

part of the energy Green functid@2],

T(E)*xRgiG(rgpc,ropc,E) ] (6)

wherer gpcis the center of the QPC. The physical reason that
G(rgpc.rorc,E) appears in Eq(6) is because all waves en-
ter our resonator within a fraction of a wavelength of that
point. If a point source of waves is launchedrgpbc with
energyE, the complex numbeG(rgpc,§ gpc, E) is just the
amplitude for returning tagpc. If @ significant fraction of
the rays emanating from the point source returndgc in
phase, therG(rgpc,r gpc,E) Will be appreciable, and the
returning waves will beat against the original wave and have
a large effect on the transmission.

A. Geometric orbits in the semiclassical propagator
The 2D semiclassical energy Green funct®gr,r’,E)
can be written as a sum over paths frorto r’ thus[1]:
1

21

G{r,r'\E)=——
dr.rE) (2m)3’2;;thsdﬂ

exgiS(r,r’)—imul2],
(7)

whereS(r,r') is the action andgl is the Maslov index for the
path. The stability coefficienA is given by

®

using the definitions from Fig. 13, and whef& ; is the
component ofAx; that is perpendicular tp,; .

The coefficientA describes the stability of trajectories be-
ginning from a particular point in phase spaceAlfs large,
then small changes in the initial direction of the trajectory
lead to large displacements in the final positions. More pre-
cisely, if the distanceAx, ; grows exponentially with the
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FIG. 15. Semiclassical transmission including only the geomet-

ric orbits. The data are for fixed energy, correspondingRs- 40,

For the Casg of our rgsonator n the unstable re.glme, onI%ith the distance between the wall and reflector varied alongthe
one type of orbit enters into the sum in Ed): the horizontal axis

orbit. Therefore, in order to find the contributions of the '

geomet.ric orbits to the tran.smission spectrum, we _need onI)tig_ 3, we see that the peak positions match very well with
the actions $=kl, wherel is the length of the orbitand  {he experimentally measured spectrum. Note, however, the
stability coefficientsA for the primary horizontal orbit and its  gpsence of the peaks corresponding to diffractive orbits

repetitions. In addition, we need to keep track of the Masloyhich are present in Fig. 3. It is to the calculation of these
index for each orbit. A series of such orbits, together with theyitfractive resonances that we now turn.

associated Maslov indices, is shown schematically in Fig.
14(a).

In this figure, the QPC/wall is located at the lower part of
each diagram, while the reflector is located at the upper part. So far, the Green function in Eg7) includes paths that
Each upward(downward sloping line segment represents undergo evolution under the free-particle Hamiltonian, in-
part of a trajectory from the QPQeflecto) to the reflector ~ cluding bounces off the wall and mirror. In order to calculate
(QPO. Maslov indices ofu=2 are indicated for points the spectral properties of the resonator semiclassically, dif-
where the wave is reflected at the wall or arc reflector, and affactive orbits must be included into the sum over paths that
index of u=1 is acquired each time the ray passes thougfiorms the semiclassical propagator. This problem has been
the focus on its return from the reflector toward the wall. ~studied by a number of authdig—4]. In the literature, much

Figure 15 shows a transmission spectrum for the resona’[@ﬁtention has been focused on finding the effects of diffrac-
in the unstable regime, computed using only the horizontalion on the spectra of closed systems. However, in closed
orbit. For this calculation, the sum in E() was cut off after ~ Systems, diffractive orbits generally play a minor role be-
the 20th term, that is, orbits of up to 20 round trips werecause they are overwhelmed by the huge number of unstable
included in the sum. The half-wavelength periodicity of theperiodic orbits that do not involve diffraction. In this section,

spectrum is clearly seen in the figure. Upon comparison witiihese methods will be extended to include open systems.
For our purposes, it is sufficient to include diffraction at

length of the trajectories, we say that the trajectories are
chaotic. IfAx, ; grows only linearly, then they are stable.

B. Diffractive orbits in the semiclassical propagator

(@) Geometric ferms the level of a single diffraction event per orbit. Although
: N A ANA A multiply diffracted orbits strictly belong in the semiclassical
A+ M + NV\ + /\/\M + sum, in practice they can be safely neglected. This is because
L A A A the amplitude of an incident ray on the reflector tip is subse-
- quently sprayed in all directions, so that only a small part
() Diffractive ferms returns in a direction that eventually leads it back to the

the first for going from the starting point to the point of
diffraction, the second for the diffraction event itself, and the
FIG. 14. Diagrams of orbits included into the semiclassicalthird for going from the diffraction point to the final point, as
Green function in Eq(7). In (a), the horizontal orbits are shown. follows:
The upper vertices represent bounces off the reflector, while the
lower vertices signify reflections off the QPC. The Maslov indices Gt (I, 1", E)=Gedr,rg,E)D(l4,15,601,6,,E)Gg{rq,r",E)
are shown for each part of each orbit, and the total index is given

ho AN N QPC. Therefore, we will consider only singly diffracted or-
* VAT AT S VAV bits. The Green function is the product of three amplitudes:
QAI:l N N i:S N N uZ:S N N ’ n;le N N ’ IA:l(Jz N N ’ u:le N

below each diagram. Itb), the diffractive orbits are shown. The 1 D(l1,12,61,60,E)

filled circle represents a diffraction event, where the term is multi- T 27 s JAA, COS$1 COSh,
plied by the diffraction coefficienD. After a diffractive event, the

return path does not acquire a Maslov index of 1, because it is a Xexdi(S;+Sy) —im(py+ p2)/2], (C)

diffracted ray; only the specularly reflected rays participate in the
caustic. where the diffraction event occurs at positiof, and the
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diffractive orbits included ———
08 geometric orbits only
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FIG. 16. Here are shown the various angles relevant to a par-
ticular diffractive orbit entering into the semiclassical Green func-  FIG. 17. Semiclassical transmission including both the geomet-
tion in Eq.(9). The first leg of the orbit|,, is drawn with a solid  ric and diffractive orbits. The data are for fixed energy, correspond-
line, and the second legy, is drawn with a dotted line. This orbit ing to kR=40, with the distance between the wall and reflector
corresponds to the third term in the sum shown in FigbL4 varied along thex axis. The result without diffraction is shown with
a dashed line for comparison.
total path fromr tor’ is made up of two legs, one of length

1, with stability coefficientA;, and the other of length,,  reflector/wall separations neBr= R, because there the focus
with stability coefficientA,. Each of these legs has an action gpproaches the point where the Green function is evaluated,
S;=kl;, $;=kl; and Maslov indexui, w, associated and the semiclassical prediction diverges. This is the reason
with it. The factors cog;, cose, represent the coupling of for the incorrect, large transmission calculatedat R.
each leg to the QPC, and will be discussed in the next sec- |n Fig. 18, we plot the semiclassically calculated trans-
tion. The various parameters are illustrated in Fig. 16 for onenission of the resonator in the unstable regime versus both
of the shorter orbits, corresponding to the third term in Fig.reflector/wall separation and wavelength. The parameters are
14(b). In that figure, the first few terms entering into E§)  identical to those of the experimental data shown in Fig. 7.
are shown, and diffraction events are represented by filledhe separation of the diffractive peaks from the FabryePe
circles. peaks with increasing reflector/wall separation is quite clear.
The diffraction coefficienD(l,,1,,6,,0,,E) depends on
the lengths of each leg as well as the angles that the incident
and diffracted ray make with the surface at the tip of the
obstacle. These various lengths and angles are shown in Fig.
16. The diffraction coefficient in the sum above is similar to

that appearing in our study of the half line, differing only in b

the argument of the Fresnel integral. It is given by
klql,
IV,
kil
Vi,

ai,r=\/§co< b+ 02), E_-a

transmission

9.5

9.0

D(61,60,,l1,15,k)=—sgna)K

D/ A

+sgna,)K , (10 85 |

2
8.0 -

andK(x) is the modified Fresnel integral defined in E).
The effect of the diffractive terms in the sum is shown in
Fig. 17. For this calculation, all orbits with up to 20 round
trips between the wall and mirror and zero or one diffractive
events were included in the sum. We see that the effect of the 1.5
. . . . . 0.0 0.1 0.2 0.3 04
diffractive terms is to modulate the geometric result, with
new peaks appearing to the right of the geometric peaks. The (D-RR

theoretical curve appearing in Fig. 17 is overlaid with the |G, 18. Semiclassical conductance of the resonator versus
experimental data in Fig. 3; the agreement between theoRyavelength and reflector position in the unstable regime. The plot is
and experiment is quite good, in both the peak positions angxactly analogous to the experimental data shown on the right side
widths of the geometric and diffractive peaks. We emphasizef Fig. 7. Note that the semiclassical prediction breaks down near
here that the semiclassical prediction breaks down foD=R (see text
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(a) geometric paths (b) diffractive paths

FIG. 19. In(a), the two shortest geometric trajectories from the
QPC to the point are shown. Such orbits are specularly reflected
off the wall and mirror. In(b), the two shortest diffractive trajecto-
ries from the QPC to the poimtare drawn.

Two diffractive peaks per geometric peak are visible. The
half-wavelength periodicity is also apparent. The similarity
between theory and experiment in Figs. 7 and 18 is striking.

C. Semiclassical wave functions

In this section, we describe the procedure for including
diffraction into a semiclassical calculation of the resonator
wave functions. As in the previous sections, we can split up
the sum over paths into a geometric part and a diffractive
part. The contribution ta/ from the geometric orbits is pro-
portional to the semiclassical amplitude for getting from the
QPC to the point of interest:

FIG. 20. Two wave functions calculated semiclassically. On the
left, only the geometric paths were included in the sum; on the right
trajectories that diffract off the edges of the reflector were taken
into account. These plots are for identical parameter sets as those
Pged 1) *Gsd ropa !, E), (11)  shown in Fig. 6.

wherer gpcis the location of the QPC andis the location of  also show the result when diffractive paths are left out of the
interest. This Green function is the same as we have alreadyum. In the calculation, all singly diffracted paths involving
encountered in the semiclassical expression for the transmisyp to 20 bounces were included.
sion neglecting diffraction, appearing in Eq$) and (7). We saw earlier that diffraction has a large effect on the
The only difference is that now we are looking at an off- transmission spectrum, which in turn could be derived from
diagonal element of the Green function, rather than a diagothe value of the wave function near the QPC. By contrast, we
nal element. Some of the shorter trajectories that are insee now that the inclusion of diffraction has a relatively mi-
cluded in the sum are shown in Fig. (82 All such nor effect on the overall appearance of the wave functions.
trajectories begin at the QPC and end at the pointnder-  The explanation for this apparent paradox is that the QPC is
going specular reflection at the wall and reflector. near many reflection boundaries, where the diffractive cor-
To include diffraction, we simply add diffractive terms to rections are especially large.
the sum, much as we did to incorporate the effects of diffrac- The transmission through a small apert(tere the QPT
tion in the formula for the Green function in E(Q). We s extremely sensitive to small returning bits of amplitude,

have which interfere coherently with the wave entering through
the aperture to modulate the transmission. In our case, a ma-
P(r)=Gsd I gpe, I E) jor source of returning amplitude is provided by the diffrac-

tive orbits. This is analogous to scanning tunneling micro-
T Gsdropeilip E)D (112,01, 02,B)Gsdrip 1 E), scope “quantum corral” imaging23], where the tunneling
(120  from the tip plays the role of the quantum point contact, and
reflections from atoms and impurities represent the diffrac-
where the diffraction coefficierD(l4,1,,6;,6,,E) is iden-  tion and geometric scattering off the ends of the reflector.
tical to that appearing in Eq.10). The lengthsl,,l, and  The modulation of the transmission through the QPC by the
anglesf,, 6, are defined the same way as in Fig. 16, with thepresence of the reflector can be understood in terms of a
obvious difference that the final point of the trajectory is nosmall returning wave amplitude beating against a much
longer the location of the QPC, but the location of interest, stronger “nascent” amplitude coming out of the QPC: if the
In Fig. 20 we show the result of a semiclassical calculatioramplitude from the QPC in absence of the reflectak,iand
for the wave functions pictured in Fig. 6. For comparison, wethe returning amplitude with the reflector presengighen
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(a) stable regime |

lg(t)| (arb. units)
lg(t)l (arb. units)

, e

0 10 20 30 40 50 60 70 80 90 0 5 10 15

FIG. 22. Experimental return spectra for the unstable regime.
oo T Time has been converted to the rati¢tR, whereL is the length of
(b) unstable regime the orbit. The splitting of the peaks clearly demonstrates the influ-
ence of both Fabry-Pet type orbits(markedf) and diffractive
orbits (markedd), which are slightly shorter. The calculated lengths
of the orbits are shown by vertical bars; short bars for the diffractive
orbits, and longer bars for the horizontal orbit. For these plots the
opening angle was 115 ° and the reflector/wall separation was 32.5

lg(t)l (arb. units)

cm.
U “ 21, we plot the amplitudgg(t)| as a function of time for the
Wibiogeron v 0 resonator in the stable and unstable regimes, where the time

0 10 20 30 40 50 60 70 80 90 has been expressed in terms of orbit lengthtwid./c, where
L/R L is the length of the orbit and is the speed of light.
In the stable regime, the echos persist for hundreds of
FIG. 21. Experimental return spectra in tf@ stable and(b) bounces, indicating that indeed the dynamics is stable in this
unstable regime. Time has been converted to the tafiy whereL  regime. In this regime, the lifetime of the states is limited by
is the length of the orbit. For these plots the opening angle wasesistive losses in the copper plates of the resonator, which
115°, and the reflector-wall separation was 28.5 cm and 32.5 cmyas quite small: typical quality factors of the resonances in
respectively. this regime wereQ~ 3000. (Losses due to the diffraction of
amplitude around the reflector are even smallelowever,
in the unstable regime, the echos are significantly reduced in
the total amplitude at the QPC is simpy+a. The transmis-  amplitude after only a few returns. For the first few return
sion will be proportional to the square of this amplitude,  peaks,|g(t)|?> decays exponentially with a decay constant
given approximately by the Lyapunov exponent for the hori-
To|A+a|?=|A|2+aA* +a* A+|al2. (13 ~ Zontal orbit. Later peaks, where diffractive orbits are more
important, also decay exponentially but with a different de-
cay constant.

The two interference terms above, lineagajrare responsible In Fig. 22, we show an expanded view of some of the
fOI’ a." the structure in the tl’ansmiSSion When the I’efleCtOI’ is'eturn peaks Shown in Flg m) Of importance here is the
present in the cavity. splitting of the return peaks that is visible on echos 5-9. This

splitting is due to the coexistence of orbits with slightly dif-

ferent periods. The longer of these orbits is just the horizon-

VII. SEMICLASSICS IN THE TIME DOMAIN tal orbit, which appears on the right of each group. The left

) ) ) o .. peak of each group is made up of a family of diffractive
Further evidence of diffractive orbits in the transmission g pits of nearly the same length. We have done a quantitative
spectrum can be obtained by analyzing the spectrum in they,qy of the lengths of the closed orbits and find excellent
time domain. The two representations are related by the FOygreement with the observed splitting. The calculated lengths
rier transform of the orbits appear in the plot as vertical bars above the
. peaks. The horizontal orbit length is marked with a longer

g(t):f S)y(w)eetdt. (14) bar. The lengths pf all the orbits in units of th.e radiqs of

—o curvature appear in Table I. The presence of this splitting in

the return spectrum is strong evidence in support of the claim

Hereg(t) represents the amplitude for a pulse launched fronthat diffraction off the edges of the reflector supports other
the QPC at time=0 to return at time. That is, if a short closed orbits, which lead to resonances in the transmission
pulse were emitted from the antenna at tite0, echos spectra. Note that for the long orbits the diffractive peaks are
would return to the antenna at certain later times. Theseven stronger than the peaks from the geometric orbit. This
echos are indicated by peaks in the return spectrum. In Figs because the number of diffractive orbits increases linearly
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TABLE I. Lengths of the diffractive orbitsN is the number of @ ® © .

half bounces in orbitlN; the number of half bounces in the first leg; e ," ,"

N, the number of half bounces of the second leg;ithe length of | !

the first leg;L, the length of the second leb;;=L1+Ls; LporiS ' ' .

the length of the horizontal orbity =L~ Ly. The configuration AN MY A

of the resonator for these data was=1.0656R, a«=115°. All x:<0 k20 - 10

numbers are given in terms of the radius of curvature of the reflec-

tor, which is taken to be unity.

FIG. 23. The lemorta), circle (b), and stadiunic) billiards. We

are interested only in states of these billiards that are even about the

N N;p N Ly L2 Ltot Lhor A x axis and odd about the axis.
2 1 1 103658 1.03658 2.07316 2.13114 0.0580tj| it touches the straight wall. The resulting shape is one-half
4 3 1 312029 1.03658 4.15687 4.26228 0.10540f a lemon billiard[see Fig. 289 ]. The shape of the lemon
6 3 3 312029 3.12029 6.24058 6.39342 0.1528pilliard is determined by the parametes=(D —R)/R<0,
5 1 522441 1.03658 6.26099 0.1324 which is thex value of the center of curvature of the arc on
8 5 3 522441 312029 8.34470 8.52456 0.1799the right in units of the radius of curvature. The lemon bil-
7 1 7.34315 1.03658 8.37973 0.1448 liard has been studied befof&,9]; for our purposes it is
10 5 5 522441 522441 10.4488 10.6557 0.2069important that the classical dynamics in the lemon billiard is
7 3 7.34315 3.12029 10.4634 0.1923 dominated by a large regular region.
9 1 947048 1.03658 10.5071 0.1486 As Xg is increased to 0, the area enclosed by the arc
12 7 5 734135 522441 125677 12.7868 0.1961becomes half of a perfect circle, and the closed system be-
9 3 947048 3.12029 12.5908 0.1961 comes completely integrablesee Fig. 28)]. The eigen-
11 1 11.6009 1.03658 12.6375 0.1494 states of a c_:ircular bl”lard aré type Be§s_el functions. Fi-
14 7 7 734315 7.34315 14.6863 14.9180 0.2317Mally, asxp is maQe posmvel, the semicircular arc can be
9 5 947048 5.22441 14.6949 0.2231 extended yv_|th horizontal s'gra|ght segments to form half of_ a
11 3 11.6009 312029 14.7212 0.1968 §tad|gm billiard. The cla§S|caI dyr_1am|cs in the stadium bil-
13 1 137309 1.03658 14.7675 0.1505 iard is completely chaotic. See Fig. @3 .
1 o 7 semis ramls 16ai% 1o 0z3ss, [ Senstaes of hese e sjtems share ceran rop
11 5 11.6009 5.22441 16.8253 0.2238 .
13 3 137309 312029 16.8512 0.1979 qlosed systems, there are no wall ends SO we expect d|ffrac—
tion to play a smaller role in the energies and wave functions
15 1 15.8622 1.03658 16.8988 0.1503 [24].
18 9 9 947048 947048 18.9410 19.1803 0.2393" Tpq similarity between these closed systems and our reso-
11 7 116009  7.34315 18.9441 0.2362 pator is greatest in the stable regime. In this regime, the
13 5 13.7309 522441 18.9553 0.2250 states of the resonator are essentially the same as the states of
15 3 158622  3.12029 18.9825 0.1978 the lemon billiard that are even about theaxis and odd
17 1 17.9946  1.03658 19.0312 0.1491 about they axis. (The straight wall in the resonator lies on
20 11 9 11.6009 947048 21.0714 21.3114 0.2400they axis, thus enforcing a node there, while the symmetric
13 7 13.7309  7.34315 21.0741 0.2373 position of the antenna means that it excites only states that
15 5 15.8622 5.22441 21.0866 0.2248 are even about theaxis) As the reflector position is varied,
17 3 17.9946  3.12029 21.1149 0.1965 we correspondingly change the parameigrO of the
19 1 20.1231  1.03658 21.1597 0.1517 lemon billiard, and compare the states of each system. In the
22 11 11 11.6009 11.6009 23.3018 23.4425 0.2407experiment, we see an avoided crossinggt 0. To inves-
13 9 13.7309 9.47048 23.2014 0.2411 tigate this, we can follow the states of the lemon/stadium
15 7 15.8622 7.34315 23.2054 0.2371 billiard as the parameteq, is swept slowly through zero.
17 5 17.9946 522441 23.2190 0.2235 InFig. 24@) we plot the(even-aboutk, odd-abouty) lev-
19 3 201231 3.12029 23.2434 0.1991 €ls of the lemon/stadium billiard as a function of the param-
21 1 22.2548 1.03658 23.2914 0.1511 eterxo=(D—R)/R and wavelength. On the right, the corre-

sponding experimental transmission spectra for the open

system are shown. Notice the exact matching of the trans-

with the length of the orbit, whereas there is always only ongmission peaks with the lemon billiard states in the stable
geometric orbit, regardless of length.

VIIl. THE AVOIDED CROSSING

regime. This excellent agreement is an artifact of the fact
that, while our resonator is a geometricatlgensystem, it is

classically closed in the sense that almost all trajectories
beginning at the QPC that hit the reflector are doomed to

We now turn our attention to the avoided crossing thatforever remain in the region between the wall and the reflec-

appears in Fig. 7 neaD(— R)/R=0. We mentioned earlier

tor. We only begin to notice the “openness” of our resonator

that the level repulsion at this point is in part mediated byfor the peaks corresponding to large numbers of angular
diffraction. To show this, we compare our open resonatonodes. As we shall see, such states have a large angular
with three closely related closed systems. spread, and it grows with decreasirg, so that eventually

In the stable regime, imagine closing the QPC aperturghe caustics of the classical orbits supporting these states
and increasing the open angle of the arc-shaped reflector uapproach the tip of the reflector. When this happens, the
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(®)
.2 A
P
(16 FIG. 24. On the left, the states of a closed
’ 547" | billiard are shown, as the parameteyris varied.
For xo<0, the billiard is a lemon billiard; for
gg L (149 i Xo=0, it is a circle; forx,>0 it is a stadium. For
Xo<0, we have darkened the lines corresponding
= = 13,8 i
S S Z.LQQDL“ to the allowed states of the corresponding open
8.6 15— J system(see Fig. 25 for the corresponding eigen-
‘ functions. On the right, the experimental trans-
aa (W ] mission spectra for the open system are shown
' for the same parameter range. Note the similarity
(y) of the figures in the range,<0, where the open
82 (’1’2,8) : g system exhibits stable classical dynamics.
:/ PR
8 X 8 1 1 1 1 1
015 01 -005 0 005 01 015 015 01 -005 0 005 01 O0.15
X0 X0

states broaden and disappear. For example, this is appareitase space for roughly the Heisenberg time. Trajectories
for the peak with quantum numbe($3,8 at aroundx,= that leave that region of phase space explore parts of phase
—0.1. The wave function corresponding to this peak has 13pace where the systems differ and the correspondence
radial nodes between theaxis and the reflector, and eight breaks down. For the circle billiard at our experimental pa-
angular nodes. The states with fewer angular nodes do neameters, the particle makes approximately seven horizontal
have such a wide angular extent, and therefore they do nditounces within the Heisenberg time of the quarter stadium.
disappear from the spectra until the reflector is farther from Using the 2D density of states, we can estimate the range
the wall. of xo for which we may expect rough correspondence be-
It is apparent that there are many states in the closetiveen the eigenstates of the closed system and the reso-
lemon billiard that do not appear at all in the analogous opemances of the open system in the unstable regime. There is
system. All such states have considerable amplitude near tt@nother characteristic time,, which we will call the
walls of the lemon billiard that are “missing” from the open Lyapunov time, which is the characteristic time that it takes
resonator—therefore in the open system the analogous stat&s a trajectory to “fall off” the horizontal periodic orbit.
escape the resonator immediately. Thus they are absent iWe expect correspondence whép=<t,. The Lyapunov

the experimental transmission spectra. time is
At xo=0, there is an avoided crossing in both the open
and closed systems. However, we see that the level repulsion L
is stronger in the open system. For example, observe the t}\:k)\Lyap, (15

level repulsion of the stated7,0 and(16,2. The distance
of closest approach of these two levels is four times great
in the open system than in the closed systéfor the open
system, we judge the distance between the “levels” as th
distance between the peak maxiinsow, the major differ-

Ghere L is the length of the periodic orbit\ y,, is the
Lyapunov exponent of the orbit, aridis the wave number
?L/k is the period of the orbjt We will focus on the hori-

zontal orbit for the case where the system is just barely un-

ence between the two systems as far as the eigenstates A&ble so that ~2R. The Lyapunov exponent for the hori-
concerned is the presence of diffractive orbits in the Ope'}ontal, orbit is given by the logarithm of the largest

case. Semiclassically speaking, there are diffractive pa.thgigenvalue of the monodromy matrix, linearized about the
that go from one state to the other and introduce a couplin '

$orizontal orbit
that increases the level splitting. Therefore, we believe that '

the avoided crossing is in large part mediateddiffraction
in the open system.

For x>0, the correspondence between the closed and
open systems comes to a somewhat abrupt halt. This is ap-
parent in Fig. 24. The reason is as follows. In the close
system, orbits with times up to about the Heisenberg tim
ty=1/AE affect the properties of the quantum states. In the
open system, on the other hand, only a few orbits from a M. =1+ 2o+ 2yXo(1+X0) ~ 1+ 21xo, (17)
very specific part of phase space stay in the system for more
than a few bounces. Therefore, we can expect states of tHer smallx,. Thus the Lyapunov exponent is
closed and open systems to correspond only if a significant
subset of trajectories remains in the nonescaping region of )\Lyap~ln(1+2\/x—o)~2\/x—o.

M= 2 1+ 2%, (16)

1+ 2%, 2x0(1+x0))

ilo]. The largest eigenvalue of this matrix is given by
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Now, in our energy rang&R~187x. Thus we have for the
value ofxy at which correspondence ceases to hold
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As indicated, this value of; is much less than a wavelength,
scaled to the radius of the billiard. This means that the state
of the closed billiard already have mixed through a numbey .
of avoided crossings by the time the circle has beer \ W
“stretched” by one wavelength. Indeed, in Fig. 24 we see 138
that the first avoided crossings are already happening near
Xo=0.02, consistent with our rough estimate.

A sampling of states for the closed system of the
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’//,,/

\)
W

N

FIG. 25. Eigenfunctions of the lemon/stadium billiard. On the
top line is shown the parametap, which describes how far the

| Istadi billiard is sh in Fig. 25. In this f th billiard is from a circle. On the left, we show some lemon billiard
emon/stadium billiard 1S shown in =1g. 2o. In this ngure, the jgenfunctions, together with their quantum numbers. To the right,

states corresponding to the series Of ,q“a”tum numbers (17, show the eigenfunctions associated with each lemon state, as the
to (13,8) are shown, as the transition from a lemon t0 g,5rameten, is varied adiabatically toy=0,0.02,0.2.
stadium is made. The corresponding valueskdbr each
state shown are given in Table Il. The valuexgfis given at ~ Fabry-Peot type state in Fig. 6. There is even the appearance
the top of each column. We see that the angular extent of thef a focus just to the right and left of the center of the billiard
lemon billiard states increases with the number of angulain these two states, analogous to the focus seen in the Fabry-
nodes, as mentioned previously. Rs approaches zero, the Peot state for the open system.
angular extent of each state is fully developed and covers the In the last column, we plot the five wave functions after
entire billiard, as is required by the rotational symmetry ofthe parameterx, has been adiabatically increased xg
the circle billiard states. The transition from the first to the
second column in Fig. 25 idiabatic, that is, from left to TABLE II. Eigenvaluesk for the states shown in Fig. 25. The
right we track the states with the same character. quantum numbers in the first column are good only whgnis

In the third column, we have plotted the states aftehas negayve or a sr.nalll p05|t|vg number. In the stadium regime, the
been adiabatically increased to the small value,=0.02, classical dynamics is chaotic and there are no Ionger any good
such that they still bear some resemblance to the states of tifg2ntum numbers; hence the quantum number assignmes for
circle. This parameter value was chosen to be just before the -2 'S Only an indication of its adiabatic ancestor for smaller
first avoided crossing in the closed system, in accordanc alues ofxo. Note also that in the quantum ”““?b.e””g system we

. . . . 4 0 not count the angular node along thexis. This is to keep the

with the discussion above. This effectively means that theanalogy with the open system, where that node is trivial as it is
periodic orbits are not too different from those of a circle .4 by the position of the wall.
billiard; i.e., the periodic orbits are only weakly unstable.
This means that one may still draw analogies between the

. . . Xo

closed and open systems in th|§ regime, although the charafﬁ'm) —0.2 0.0 0.02 0.2

ter of a particular resonance in the open system may be

shared by several states in the corresponding closed systef7,0 71.3806 57.3275 56.8273 51.8407
For example, note that the first two states in the third columr{16,2 70.2283 57.2577 56.4768 51.6105
have angular lobes that are qualitatively similar to the dif-(15,4 69.0855 57.1173 56.2240 51.3391
fractive state shown in Fig. 6. On the other hand, the third14,6 67.9527 56.9052 56.1205 50.2602
and fourth states in that column have amplitude running from13 g 66.8308 56.6196 55.8705 50.7444

the center out along thr-axis, qualitatively similar to the
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‘l’ Al magnet

FIG. 26. A cross section down a diameter of the coarse probe % ®
used for measuring the microwave field. It has cylindrical symmetry %
2

about the center axis.

=0.2, or 20% of the radius of curvature. Now we see that the _>"°
states no longer have anything to do with the states of the
open system, exactly for the reasons given above.

IX. IMAGING WAVE FUNCTIONS WITH A COARSE 5 Q//\J'

PROBE \ %

We end this paper with an interesting discovery that was
made in the course of carrying out the measurements de-
scribed above: namely, the possibility of measuring an elec- - o .
tronic wave function in a 2DEG. The viability of measuring '
pure state wave functions in the context of microwave bil-
liard systems has been demonstrated by many auffi@rs
15]. However, the imaging of a wave function ineal quan- FIG. 27. A comparison betvveen_fin_e and coarse measurement
tum system has not yet been achieved. probes. The sizes of the probes are indicated by circles in the lower

We believe a technique similar to the method used her corner of each graph. In the upper plot, an arrow marks the
could be applied in clean mesoscopic systems to obtain im?’ robe. The ticks on all axes are 10 cm apart.
ages of two-dimensional wave functions in a 2DEG. In such
systems, the Fermi wavelengthof the electrons is on the

order of 50 A. In analogy to the steel ball used in the mi- |5 summary, we have demonstrated the existence of dif-
crowave experiments, an atomic force microscOfeM) tip  fractive orbits in an open microwave billiard, which give rise
held close to the surface of the heterostructure could serve & resonances and wave functions that would not be pre-
a perturbation to measure the frequency shifts. However, theicted by a simple semiclassical theory. Such orbits are of
perturbation due to a nearby AFM tip on the electron wavamportance in open, unstable systems where the number of
function is a smooth potential disturbance 50-100 A in sizeunstable classical periodic orbits is small. In such systems,
comparable to or greater than One might expect that it diffraction can play a major role in determining the spectrum
would be difficult to measure the nodal lines of a wavefunc-of the system. Furthermore, we have shown that it may be
tion with such a coarse probe. To investigate this problempossible to measure the pure state wave function of an elec-
we tried measuring a microwave mode with a coarse probdron in a 2DEG, by usig a a coarse AFM tip as a probe.
Instead of the small steel ball, we used a probe 8 cm in size,
corresponding to 1.5 wavelengths, for these measurements.
The probe is shown in Fig. 26. It is approximately a “chord”
of a sphere. The probe could be moved around the upper This work was supported by NSF Grant No.
surface of the top plate of the cavity by means of an externaCHE9610501. We are grateful to the Hewlett Packard Cor-
magnet, in a manner similar to that used for the steel balporation for the loan of a network analyzer that was used in
perturbation. For a discussion of the form of the perturbatiorthese experiments. We thank J. D. Edwards for the computer
caused by this probe, see Appendix B. program that generated the exact quantum mechanical wave
The results of a wave function measurement of the peakunctions.
d; with the coarse probe are displayed in Fig. 27. Only half
of the wave function was measured. For comparison, the
same state as measured by the 4 mm ball is shown as well. APPENDIX A MASLOV INDICES

Note that far from the QPC the nodal lines in the two mea- |, the experiment, the antenna is placed very close to, but
surements match very well. For the coarse measuremeryot exactly at, the wall. This means there are in flmtr
data near the wall and mirror were unavailable because of thgrpits associated with each single orbit in the billiard when
large size of the probe. The level of detail obtained with thethe source is placed exactly at the wall. The four orbits as-
coarse probe is surprising, considering that it was dve¥e  sociated with the shortest horizontal orbit are shown in Fig.
half wavelengths in diameter. This result suggests it might b@8. Each orbit in this family has a different total Maslov
possible to image an electron wave function directly in aindex and length, summarized in Table IlI.

2DEG. A perturbative analysis of the effect of the coarse We can find the effect of grouping these four orbits into a
probe is presented in Appendix B. single orbit by computing the sum

X. CONCLUSION

ACKNOWLEDGMENTS
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FIG. 28. Four orbits associated with the shortest horizontal orbit
when the antenna is displaced from the wall. The trajectories start FIG. 29. Two trajectories arriving at the antenna from slightly
from the filled circles and end on the open circles. These circles ardifferent angles. The antenna is a distaddeom the wall, as in the
really the same point, namely, the antenna position; they are digrevious discussion.
placed from each other in the figure so that the four distinct paths
are visible. The Maslov indices acquired on each segment of each L1,=1(Locos¢pTd)?+(LoSing)?~LoTd cosg,
orbit are indicated. The antenna is a distad@vay from the wall, (A3)
and the horizontal distance from the wall to the reflectdDis

where ¢ is the angle between the trajectdryand thex axis,
and — and + correspond to trajectories 1 and 2, respec-

AgSerImherl2= ¥ giSnmimunl2, (A1) tively. The sum over orbits is then

n=a,B,y,0
eiSeﬁ—i’n',u,effIZZ eiSl+ eisz—iw
where the sum is over the four orbits ds-0. The coeffi-

cient A will be found by doing the sum. We have =2 cogkdcos¢—im/2)eko~im?
A Seft—i Thefl2— g2ik(D—d)~37if2 | 52ikD—5if2 ~2kd cosge'klo~ 1772, (A4)
4 @2K(D+d)~T7i/2 As expected, the effective action for the two paths is just

Sei=kLg, and the Maslov index ig¢= 1. The factor cogh
appearing above is exactly the angular-dependent coupling
coefficient appearing in Eq9). This is just the simple an-
gular dependence of @wave point source.

— e2ikD75frri/2(2_ e2ikd_ e72ikd)

=2 k=572 _ 2 cog 2kd)]

~(2kd)282ikD—57ri/2_ (AZ)
APPENDIX B: EFFECT OF A COARSE PROBE

_ 2 _ _
Thus we have that=(2kd), uer=>5, andSer=2kD, as In this section we derive an effective potential describing

expec@ed_. . . . the perturbation to a TEM microwave resonance due to a
A similar analysis on orbits coming to the antenna at an

angle shows that the coupling to the antenna varies ag,cos coarse probe. For simplicity we consider the case of a closed
L T 1 1 — _lwt 1
as stated in Eq(9). Referring to Fig. 29, a source of rays cavity. The electric field(r,t) =ReE(r)e and magnetic

: _ —iwt

begins at the poinP, and two of the rays find their way to {;eltirlrgrg;'z))f_thie%;ﬁum aorIaTcl)JChsSapS(etfte) c;sn fgﬁrot\j;(spressed
the antenna. The direct path has lengthand Maslov index q 9 Y '
pn1=0. The second path first bounces off the wall before 1
arriving at the antenna, and has lengthand Maslov index E(x,y,2)= % (x,y)i, (B1)
mno=1. We want to combine these two paths into a single
trajectory, by doing a sum over the two trajectories as was
done above, in order to find the effective action and Maslov 11
index for the trajectory. We further define the lendth, B(x,y,2)= n2 ik
which is the distance betwedhand the intersection of the
wall with the axis of symmetry. The two lengths andL;  The height of the cavity in the direction is denoted by.
are given by (We use the normalization conventiongdxfdyy?
=[dr|E|*=[dr|B[*=1)

The perturbation to the frequency of a microwave reso-

. .

TABLE lll. Lengths and Maslov indices for the orbits shown in

Fig. 28. nance by a conducting probe[it6]
Orbit Length Maslov index 02— w2
0
a 2(D—d) 3 2 = fAVdr[|B(r)|2_|E(r)|2] (B3)
B 2D 5
y 2D 5 1 1
5 2(D+d) 7 :HJ dxf dyéh E(Vl,//)z—z,//z , (B4)
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where wq is the unperturbed frequency adth(x,y) is the Sh(x,y)

thickness of the probe. The volume integral is over the vol- Veﬁ(X.Y)“VZT- (B7)
ume excluded by the probe; the second line follows because

the fields have na dependence. From the chain rule and the

Helmholtz equation, Note that Eq(B7) implies that the area integral & van-
ishes, which is a significant constraint on the type of poten-
Sh(Vy)2=V-[6hyVy— 2 V(8h) y?]+k2shy? tial that can be modeled by a conducting probe in a micro-
wave cavity. In particular, the perturbation of a 2DEG by an
+ 3 V2(sh)y2. (B5  AFM tip would not have this property.

) _ ) ) ) In the case of our prob&h/h~f[1—(p/py)?] wherep is
Substitute Eq(B5) into Eq.(B4). Sincesh is localized away e distance from the center of the propg=40 mm, and
from the lateral boundaries of the cavity, the surface terms of = 4, so

Eq. (B4) vanish and we are left with

2

2 2
w-wh 1 1v2(sh) at of
w2 _EJ dxf dy; —— ¢~ (B6) Veﬁ”—p—g+g5(P—Po)- (B8)

Therefore, to first order in perturbation theory, the coarse
probe can be thought of as an effective perturbing potentiah other words, the probe’s effective potential is a flat well
of the form surrounded by a repulsive ring at the probe’s circumference.
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